Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Triệu Việt Hà (Vịt)
Xem chi tiết
Akai Haruma
7 tháng 7 2021 lúc 20:29

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

Akai Haruma
7 tháng 7 2021 lúc 20:34

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2019 lúc 12:12

Nguyễn Thảo Nguyên
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 7 2023 lúc 21:56

\(a,=\left(5x^3+10x\right)+\left(x^4-4\right)\\ =5x\left(x^2+2\right)+\left(x^2+2\right)\left(x^2-2\right)\\ =\left(x^2+2\right)\left(x^2+5x-2\right)\\ b,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(c,=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\\ d,=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\\ e,=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^{10}-x^7+x^5-x^4+x^3-x+1\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 21:54

a: =x^4+2x^2+5x^3+10x-2x^2-4

=(x^2+2)(x^2+5x-2)

b; =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)*(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

c: =x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1

=(x^2+x+1)(x^6-x^5+x^3-x^2+1)

Nguyễn Đức Thắng
Xem chi tiết
Kiều Vũ Linh
25 tháng 5 2023 lúc 21:18

x⁸ + x⁴ + 1

= x⁸ + 2x⁴ + 1 - x⁴

= (x⁴ + 1)² - x⁴

= (x⁴ + 1)² - (x²)²

= (x⁴ + 1 + x²)(x⁴ + 1 - x²)

= (x⁴ + x² + 1)(x⁴ - x² + 1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 4 2019 lúc 4:58

Đàm Quỳnh Chi
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:24

\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 22:26

\(x^4+1\)

\(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)

\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)

Vũ Hoàng Minh
23 tháng 1 2022 lúc 20:14

bằng sau này bn nhá

Khách vãng lai đã xóa
kocanbiet
Xem chi tiết
Đường Quỳnh Giang
3 tháng 9 2018 lúc 15:33

\(x^4+1\)

\(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-2x^2\)

\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)

Phan Thị Khánh Ly
Xem chi tiết
Nguyễn Anh Quân
23 tháng 11 2017 lúc 19:40

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

Phan Thị Khánh Ly
23 tháng 11 2017 lúc 19:44

bạn ơi bạn chưa bớt 2x^2 kìa

Trần Bảo Nam
15 tháng 2 2022 lúc 19:38

ngu dốt

Khách vãng lai đã xóa
Phan Thị Khánh Ly
Xem chi tiết
Trịnh Quỳnh Nhi
23 tháng 11 2017 lúc 21:54

x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1

=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)

=(x3-x-1)(x2-x+1)

Nguyễn Anh Quân
23 tháng 11 2017 lúc 21:11

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

Vũ Hoàng Minh
23 tháng 1 2022 lúc 20:15

mik chịu

Khách vãng lai đã xóa
Khánh Ngân Nguyễn
Xem chi tiết
Pham Van Hung
12 tháng 8 2018 lúc 15:41

      \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)