giá trị của tích (1-1/2^2)(1-1/3^2)(1-1/4^2).....(1-1/99^)(1-1/100^2)
Tính giá trị biểu thức: 1/1*2+1/2*3+1/3*4+•••••+1/99*100 = ?
Cách tìm BCNN:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.Tính giá trị của biểu thức:
\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
Nhanh nhé mình cần gấp lắm!!!
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
Tính Giá Trị của biểu thức sau biết ;
S = 1 /1 . 2 . 3 . 4 + 1 / 2 . 3 . 4 . 5 +......................+ 1 / 98 . 99 . 100 . 101
Tính giá trị của biểu thức :
A=1/1*2*3+1/2*3*4+...+1/98*99*100
B=1/1*2*3*4+1/2*3*4*5+...+1/27*28*29*30
C=1*3+2*3+3*5+...+97*99+98*100
D=1*2*3+2*3*4+3*4*5+...+48*49*50
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
Tính giá trị biểu thức \(P=\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\).
\(\sqrt{1+\dfrac{1}{n}+\dfrac{1}{\left(n+1\right)^2}}\\ =\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}+\dfrac{2}{n}-\dfrac{2}{n+1}-\dfrac{2}{n\left(n+1\right)}}\\ =\sqrt{\left[1+\dfrac{1}{n}-\dfrac{1}{\left(n+1\right)}\right]^2}=\left|1+\dfrac{1}{n}-\dfrac{1}{\left(n+1\right)}\right|\)
\(\Leftrightarrow P=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}=98+\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{9849}{100}\)
*3+1/2*3*4+1/3*4*5+...+1/98*99*100 = 1/k * (1/1*2-1/99*100)
Số k trong đẳng thức trên có giá trị là
nhớ giúp mình nha
Tính giá trị của biểu thức sau:
1/1 * 2 + 1/2 * 3 + .................... + 1/98 * 99 + 1/99 * 100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
ĐẶT : A= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)\(\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
= \(1-\frac{1}{99}=\frac{98}{99}\)
Gọi tổng đó là S
TA có : S = \(\frac{1}{1.2}+\frac{1}{2.3}+......\frac{1}{98.99}+\frac{1}{99.100}\)
S = \(\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
Vậy S = \(\frac{4949}{9900}\)
Tính giá trị của biểu thức \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Ta có 99/1+98/2+97/3+...+1/99=(98/2+1)+(97/3+1)+...+(1/99+1)+1
=100/2+100/3+...+100/99+100/100
=100(1/2+1/3=1/4+1/5+...+1/99+1/100)
Vậy (1/2+1/3+...+1/100)/((99/1+98/2+...+1/99)=1/100
Tính giá trị của biểu thức \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
xét mẫu số = \(\frac{99}{1}\)+\(\frac{98}{2}\)+....+\(\frac{1}{99}\)
mẫu số = (\(1+\frac{98}{2}\))+(\(1+\frac{97}{3}\))+.......+(\(1+\frac{1}{99}\))
mẫu số = \(\frac{100}{2}\)+\(\frac{100}{3}\)+....+\(\frac{100}{99}\)
mẫu số =100 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+....+\(\frac{1}{99}\)) (1)
thay (1) vào biểu thức trên
1/2+1/3+1/4+.....+1/100 / 100 x (1/2+1/3+...+1/99)
= \(\frac{1}{100}\)
1/ 1 nhân 2+ 1/ 2 nhân 3+ 1/ 3 nhân 4 .... + 1/ 98 nhân 99+ 1/ 99 nhân 100
Nhớ dấu / là phần nhá
Tính giá trị của biểu thức
:))
chúc bạn học càng ngày càng ngu
còn : 1-1/100= 99/100
mình xin rút lui