Từ A bên ngoài (O) kẻ 2 tiếp tuyến AB,AC
M,N là trung điểm AB,AC Lấy P thuộc tia đối tia MN Kẻ tếp tuyến PI với (O)
CM PA=PI
Từ A bên ngoài (O) kẻ 2 tiếp tuyến AB,AC M,N là trung điểm AB,AC Lấy P thuộc tia đối tia MN Kẻ tếp tuyến PI với (O) CM PA=PI!
Giúp mình với
Qua điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB và AC, BC cắt AO tại H. Gọi M và N lần lượt là trung điểm của AB và AC. Trên tia đối của MN lấy P tùy ý. Từ P kẻ tiếp tuyến PQ với (O). Chứng minh PQ = PA.
Gọi E là giao của AO và MN
MN là đường trung bình của ΔABC
=>MN//BC
=>MN vuông góc AO tại E
PA^2=PE^2+AE^2
=AN^2-EN^2+OP^2-EO^2
=NC^2-EN^2+PQ^2+QO^2-EO^2
=NO^2-R^2+PQ^2+R^2-NO^2
=PQ^2
=>PA=PQ
Qua điểm A nằm bên ngoài đường tròn tâm O,kẻ 2 tiếp tuyến AB,AC với B và C lần lượt là 2 tiếp điểm . Qua O kẻ 1 đt vuông góc với OB cắt AC tại E . Trên tia đối của BC lấy điểm Q,từ Q kẻ 2 tiếp tuyến QN và QM. Chứng minh A,M,N thẳng hàng .
Từ điểm A ở bên ngoài đtròn (O), kẻ 2 tiếp tuyến AB, AC đến đtròn (O)(B,C Là 2 tiếp điểm). Từ O kẻ đường thẳng vuông góc với OC cắt Ab tại E. Từ A kẻ AD vuông góc với tia OE ( D thuộc tia OE).a) Cm: OA đi qua trung điểm của H và 4 điểm A, B, O, C cùng thuộc 1 đtròn.b) Kẻ đk HK. Cm: CK // OA và tam giác EOA cân.c) Gọi M, N lần lượt là trung điểm của OD và AH. Cm: OM.AB = OA.AN
Từ một điểm A ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm). trên tia đối của tia BC, lấy điểm D. Gọi E là giao điểm của DO vá AC . Qua E , vẽ tiếp tuyến thứ hai với đường tròn (O), có tiếp điểm là M ; tiếp tuyến này cắt đường thẳng AB ở K.
a. Chứng minh bốn điểm D ,B, ,O, M cùng thuộc một đường tròn.
b. Chứng minh D ,B, O, M ,K cùng thuộc một đường tròn.
Cho (O,R) đường kính AB. Qua A kẻ hai tiếp tuyến Ax với (O). Trên tia Ax lấy C sao cho AC> R. Từ C kẻ tiếp tuyến CM với (O) (M là tiếp điểm) a)Chứng minh: 4 điểm A,C,O,M cùng thuộc một đường tròn b)Chứng minh: MB//OC c)Gọi K là giao điểm thứ hai của BC với (O). Chứng minh:BC.BK=4R^2 d)Chứng minh: CM^2=CK.BC và góc CKM= góc CMB MNG GIÚP E VỚI GẤP
Từ một điểm A nằm ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên tia đối của tia BC lấy điểm D. Gọi E là giao điểm của DO với AC. Qua E kẻ tiếp tuyến thứ hai với đường tròn, tiếp tuyến này cắt đường thẳng AB tại K. Chứng minh rằng 4 điểm D, B, O, K cùng thuộc một đường tròn.
Mình đang thắc mắc chỗ chứng minh \(\widehat{EOC}=\widehat{ECD}\), còn mấy chỗ còn lại mình làm được rồi.
TL:
Đáp án:
k nhaaaaaaaaaaaaaaaaaaaaaaa
Ok nhaaaaaaaaaaaaaaaaaaaaa
HT
Lấy điểm M nằm ngoài đường tròn (O;R) kẻ tiếp tuyến MA đến đường tâm O, A là tiếp điểm . Kẻ AB vuông góc MO, cắt MO tại H ( B thuộc (O))
a/CM : MB là tiếp tuyến
b/CM: MB2=MH.MO
c/Trên tia đối của tia BA lấy điểm Q. Vẽ 2 tiếp tuyến QD, QE đến đường tròn (O) (D, E là tiếp điểm ). CMR : M, D, E thẳng hàng
Mn ơi giúp mik câu c vs