Gọi E là giao của AO và MN
MN là đường trung bình của ΔABC
=>MN//BC
=>MN vuông góc AO tại E
PA^2=PE^2+AE^2
=AN^2-EN^2+OP^2-EO^2
=NC^2-EN^2+PQ^2+QO^2-EO^2
=NO^2-R^2+PQ^2+R^2-NO^2
=PQ^2
=>PA=PQ
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Gọi E là giao của AO và MN
MN là đường trung bình của ΔABC
=>MN//BC
=>MN vuông góc AO tại E
PA^2=PE^2+AE^2
=AN^2-EN^2+OP^2-EO^2
=NC^2-EN^2+PQ^2+QO^2-EO^2
=NO^2-R^2+PQ^2+R^2-NO^2
=PQ^2
=>PA=PQ
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB, AC của (O;R), (BC là các tiếp điểm).
1) Chứng minh rằng bốn điểm A,B,O,C cùng thuộc một đường tròn;
2) Lấy điểm I trên đường tròn (O;R) sao cho tia OI nằm giữa hai tia OA và OB. Qua I vẽ đường thẳng tiếp xúc với đường tròn (O;R) cắt AB,AC lần lượt tại M và N. Chứng minh MB+NC=MN;
3) Qua O vẽ đường thẳng vuông góc với OA cắt AB,AC lần lượt tại P và Q. Chứng minh rằng PM.QN=\(\frac{PQ^2}{4}\)
Cho điểm A nằm ngoài đường tròn (O).Từ A kẻ hai tiếp tuyến AB,AC và cát tuyến ADE tới đường tròn (B,C là hai tiếp điểm;D nằm giữa A&E).Gọi H là giao điểm của AO và BC
a,Chứng minh rằng :ABOC là tứ giác nội tiếp
b,Chứng minh rằng :AH.AO=AD.AE
c,Tiếp tuyến tại D của đường tròn (O)cắt AB,AC theo thứ tự tại I và K.Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB tại P và cắt tia AC tại Q.Chứng minh rằng IP+KQ>=PQ
Từ điểm A ở ngoài đường tròn (O;R) vẽ 2 tiếp tuyến AB và AC (B, C là tiếp điểm). Gọi H là giao điểm của AO và BC.
a) Chứng minh AO là đường trung trực của BC
b) Vẽ đường kính CD của (O), AD cắt (O) tại E. Chứng minh AB^2 = AE.AD
c) Tiếp tuyến tại E của (O) cắt AB và AC lần lượt tại M và N. Chứng minh chu vi tam giác AMN = 2AB
d) MN cắt AO tại I, EO cắt BC tại P. Chứng minh AE // IP
Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Lấy điểm D thuộc (O) sao cho BD song song với AO. AD cắt (O) tại đểm thứ hai E. Gọi M là trung điểm của AC.
a) Chứng minh rằng Me là tiếp tuyến với (O).
b) Gọi T là giao điểm của ME với BC, I là giao điểm của DE với BC. Chứng minh rằng OI vuông góc với AT.
c) Qua E kẻ đường thẳng song song với AB cắt BC, BD lần lượt tại P, Q. Chứng minh rằng PQ=PE.
Cho đường tròn (O), AB = 2R. Trên đoạn thẳng AO lấy điểm H bất kì không trùng với A và O, kẻ đường thẳng d vuông góc với AB tại H, trên d lấy điểm C nằm ngoài đường tròn, từ C kẻ hai tiếp tuyến CM, CN với (O), M và N là các tiếp điểm (M thuộc nửa mp bờ d có chứa điểm A). Gọi P và Q lần lượt là giao điểm của CM, CN với đường thẳng AB.
a) Chứng minh HC là tia phân giác của góc MHN.
b) Đường thẳng qua O vuôn góc với AB cắt MN tại K và đường thẳng CK cắt đường thẳng AB tại I. Chứng minh I là trung điểm PQ.
Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).
1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE^2.3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).4. Đường thẳng SF cắt các đường thẳng AB và AC tương ứng tại P và Q. Đường thẳng OF cắt BC tại K. Chứng minh rằng AK đi qua trung điểm của PQ.Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Qua điểm A nằm bên ngoài đường tròn tâm O,kẻ 2 tiếp tuyến AB,AC với B và C lần lượt là 2 tiếp điểm . Qua O kẻ 1 đt vuông góc với OB cắt AC tại E . Trên tia đối của BC lấy điểm Q,từ Q kẻ 2 tiếp tuyến QN và QM. Chứng minh A,M,N thẳng hàng .
Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A vẽ 2 tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Qua A vẽ cát tuyến ADE của đường tròn (O) (D và E thuộc đường tròn (O)) sao cho AE cắt HB tại I. Gọi M là trung điểm của dây cung DE.
a)Chứng minh: tứ giác OHDE nội tiếp đường tròn
b) Trên tia đối của tia HB lấy điểm F sao cho H là trung điểm của DF. Tia AO cắt đường thẳng EF tại K. Chứng minh IK song song DF