Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Hoàng Thị Ngọc Anh
13 tháng 3 2017 lúc 20:51

Vào đây đi:

https://hoc24.vn/hoi-dap/question/32718.html

Tâm Trần Huy
15 tháng 3 2017 lúc 21:10
0≤a≤b≤c≤1 suy ra \(A=\dfrac{a}{bc+1}+\dfrac{a}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a+b+c}{abc+1}\) vì a;b;c <1 suy ra \(\left\{{}\begin{matrix}\left(a-1\right)\left(bc-1\right)\ge0\\\left(b-1\right)\left(c-1\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2abc+1\ge abc+1\ge bc+a\\bc+1\ge b+c\end{matrix}\right.\) 2abc + 2 \(\ge a+bc+1\ge a+b+c\) dấu bằng xảy ra khi (a;b;c) = (0;1;1)
Lê Thành Vinh
22 tháng 3 2017 lúc 21:06

Vậy cũng được tick???

kudo shinichi
Xem chi tiết
hattori heiji
3 tháng 2 2018 lúc 22:41

muộn rồi để lúc khác tôi làm cho

 Mashiro Shiina
4 tháng 2 2018 lúc 7:46

Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)

Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)

cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)

\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)

Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)

chứng minh tương tự suy ra đpcm

caikeo
4 tháng 2 2018 lúc 20:39

Ta có: 0≤a≤b≤c≤1⇔{1−a≥01−b≥00≤a≤b≤c≤1⇔{1−a≥01−b≥0

⇒(1−a)(1−b)≥0⇔1(1−b)−a(1−b)≥0⇒(1−a)(1−b)≥0⇔1(1−b)−a(1−b)≥0
⇒1−b−a+ab≥0⇔1+ab≥a+b⇒1−b−a+ab≥0⇔1+ab≥a+b

Tiếp tục chứng minh ta có: {1≥c0≤a≤b⇔ab≥0{1≥c0≤a≤b⇔ab≥0

cộng theo vế: 1+ab+1+ab≥a+b+c+01+ab+1+ab≥a+b+c+0

⇒2(1+ab)≥a+b+c⇒2(1+ab)≥a+b+c

Ta có: cab+1=2c2(ab+1)≤2ca+b+ccab+1=2c2(ab+1)≤2ca+b+c (1)

yeens
Xem chi tiết
Ngoan Trần
Xem chi tiết
Trần Băng Băng
5 tháng 5 2017 lúc 22:47

Bài này thì quy đồng lên sau đó VT-VP là được

Nguyễn Thị Hằng
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
hakito
Xem chi tiết
Neet
16 tháng 12 2018 lúc 21:00

Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge1\)

Khi đó dễ thấy dấu = sẽ đạt được tại biên, tức a=2, c=1 nên ta sẽ dồn các biến ra biên

Ta có: \(\left(\dfrac{a}{b}-1\right)\left(\dfrac{b}{c}-1\right)\ge0\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}\le\dfrac{a}{c}+1\)

\(\left(\dfrac{b}{a}-1\right)\left(\dfrac{c}{b}-1\right)\ge0\Leftrightarrow\dfrac{b}{a}+\dfrac{c}{b}\le\dfrac{c}{a}+1\)

Do đó \(VT\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+2\) nên chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)(*) hay \(\dfrac{\left(a-2c\right)\left(2a-c\right)}{2ac}\le0\) ( luôn đúng do \(c\le a\le2c\) )

Vậy ta có đpcm. Dấu = xảy ra khi a=2, c=1, b=1 hoặc a=2, c=1, b=2 và các hoán vị tương ứng.

Levi Ackerman
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 6 2021 lúc 20:01

\(VT=1+\dfrac{1}{1+a}+\dfrac{2}{1+2b}-1=2\left(\dfrac{1}{2+2a}+\dfrac{1}{1+2b}\right)\)

\(VT\ge\dfrac{8}{3+2\left(a+b\right)}\ge\dfrac{8}{3+2.2}=\dfrac{8}{7}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)