Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Bá Gia Nhất
Xem chi tiết
Đinh Hoàng Nhất Quyên
Xem chi tiết
Trần Thị Thùy Linh
Xem chi tiết
Trang Nguyễn
Xem chi tiết
👁💧👄💧👁
4 tháng 2 2021 lúc 22:00

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

Nguyễn Hồng Hạnh
Xem chi tiết
Trần Thùy Dương
6 tháng 10 2018 lúc 16:20

Ta có :

\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3+\left(b-a\right).x^2-\left(a+b\right).x-b\)

\(=ax^3+cx^2-1\)

\(\Leftrightarrow\hept{\begin{cases}b-a=c\\a+b=0\\b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)

Vậy ...

gtrutykyu
Xem chi tiết
Mai Tiến Đỗ
14 tháng 10 2019 lúc 0:01

a) Đặt \(f\left(x\right)=x^3+ax+b\)

Vì \(f\left(x\right)⋮x^2+x-2\)

\(\Rightarrow f\left(x\right)=\left(x^2+x-2\right)q\left(x\right)\)

\(=\left(x^2-x+2x-2\right)q\left(x\right)\)

\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]q\left(x\right)\)

\(=\left(x-1\right)\left(x+2\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)\left(1+2\right)q\left(1\right)\)

\(\Rightarrow f\left(1\right)=0\left(1\right)\)

\(f\left(-2\right)=\left(-2-1\right)\left(-2+2\right)q\left(-2\right)\)

\(\Rightarrow f\left(-2\right)=0\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1+a+b=0\\-8-2a+b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\-2a+b=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

Vậy a=-3 và b=2 thì \(\left(x^3+ax+b\right)⋮\left(x^2+x-2\right)\)

Yubi
Xem chi tiết
Huỳnh Ngọc Lộc
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:24

a: =>6x^2+2xb-15x-5b=ax^2+x+c

=>6x^2+x(2b-15)-5b=ax^2+x+c

=>a=6; 2b-15=1; -5b=c

=>a=6; b=8; c=-40

b: =>ax^3-ax^2-ax+bx^2-bx-b=ax^3+cx^2-1

=>x^2(-a+b)+x(-a-b)-b=cx^2-1

=>-b=-1; -a+b=c; -a-b=0

=>b=1; c=b-a; a=-b=-1

=>c=b-a=1-(-1)=2; b=1; a=-1

Nguyễn Lê Việt ANh
Xem chi tiết
Nguyễn Xuân Tiến 24
11 tháng 12 2017 lúc 10:57

Khai triển VT, ta có: \(VT=ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3-x^2+2\)

Đồng nhất hệ số ta có hệ điều kiện:

\(\left\{{}\begin{matrix}a=1\\b+ac=-1\\bc+2a=0\\2b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-2\end{matrix}\right.\)