Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai Nguyen Lam
Xem chi tiết
Đinh Đức Hùng
31 tháng 7 2017 lúc 16:54

\(C=x^2+y^2+xy\)

\(=\left(x^2+y^2+2xy\right)-xy\)

\(=\left(x+y\right)^2-x\left(1-x\right)\)

\(=1-x+x^2\)

\(=x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(x=y=\frac{1}{2}\)

Vậy \(C_{min}=\frac{3}{4}\) tại \(x=y=\frac{1}{2}\)

Hoàng Minh Hoàng
31 tháng 7 2017 lúc 21:00

C=(x+y)^2-xy=1-xy

Mà xy<=(x+y)^2/4=1/a suy ra C>=1-1/4=3/4

Dấu = xảy ra khi x=y=1/2

Fan boy Kim Taehyung
15 tháng 11 2018 lúc 21:22

1/2 nha bn kb với mk nha

Nhạt nhẽo Muối
Xem chi tiết
Lê Thị Thục Hiền
21 tháng 5 2021 lúc 16:17

\(x+y=1\Rightarrow x=1-y\) 

\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+\left(1-y\right)y\)

\(=y^2-y+1\)\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

=>minC=\(\dfrac{3}{4}\) \(\Leftrightarrow y=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{2}\)

✿✿❑ĐạT̐®ŋɢย❐✿✿
21 tháng 5 2021 lúc 17:07

Ta có :

\(x+y=1\Rightarrow\left(x+y\right)^2=1\)

\(\Leftrightarrow x^2+2xy+y^2=1\)

\(\Leftrightarrow x^2+xy+y^2=1-xy\ge1-\left(\dfrac{x+y}{2}\right)^2=1-\dfrac{1}{4}=\dfrac{3}{4}\)

Hay \(C \ge \dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Khôi Trần
Xem chi tiết
hoàng
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2023 lúc 17:48

\(P=\dfrac{6x+6y+2xy}{2}=\dfrac{6x+6y+2xy+10-10}{2}\)

\(=\dfrac{6x+6y+2xy+2\left(x^2+y^2\right)+6}{2}-5\)

\(=\dfrac{\left(x+y+2\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-5\ge-5\)

\(P_{min}=-5\) khi \(x=y=-1\)

cao son
Xem chi tiết
lê hồng thanh hường
Xem chi tiết
Tuyet
30 tháng 5 2023 lúc 14:47

BẠN THAM KHẢO :

loading...

Nguyễn Đăng Linh
Xem chi tiết
Nguyễn Thị Minh Thảo
Xem chi tiết
trang
Xem chi tiết
nguyen thi vang
7 tháng 1 2021 lúc 19:38

Từ đk trên ta có:  \(2y^2+2zy+2z^2=2-3x^2\)

<=> \(3x^2+2y^2+2zy+2z^2=2\left(1\right)\)

<=>\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Do (x-y)2≥0; (x-z)2≥0 nên từ(*) suy ra (x+y+z)2≤2

Hay \(-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Dấu "=" xảy ra khi x-y =0 và x-z=0 hay x=y=z

Thay vào (1) ta được 9x2=2 ; x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)

Với x=y=z =x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)thì max=\(\sqrt{2}\), min =\(-\sqrt{2}\)

Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs