106. Giải phương trình: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Giải phương trình\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
https://olm.vn/hoi-dap/detail/64436964935.html
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24=1.2.3.4=\left(-1\right)\left(-2\right)\left(-3\right)\left(-4\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
\(S=\left\{-2;0\right\}\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+4=a\)
\(pt\Leftrightarrow a\left(a+2\right)-24=0\)
\(\Leftrightarrow a^2+2a-24=0\)
\(\Leftrightarrow a^2+6a-4a-24=0\)
\(\Leftrightarrow a\left(a+6\right)-4\left(a+6\right)=0\)
\(\Leftrightarrow\left(a+6\right)\left(a-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-6\\a=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+5x+4=-6\\x^2+5x+4=4\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\\x\left(x+5\right)=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2=\frac{-15}{4}\left(loai\right)\\x\in\left\{0;-5\right\}\end{cases}}\)
Vậy....
giải phương trình
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
ĐKXĐ: \(x\notin\left\{-1;-2;-3;-4\right\}\)
Ta có: \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
\(\Leftrightarrow\dfrac{18}{6\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
Suy ra: \(x^2+5x+4=18\)
\(\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow x^2+7x-2x-14=0\)
\(\Leftrightarrow x\left(x+7\right)-2\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-7;2}
ĐKXĐ: $x \neq -1;-2;-3;-4$
$pt⇔\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{3}{(x+1)(x+4)}=\dfrac{1}{6}$
$⇔x^2+5x+4=18$
$⇔x^2+5x-14=0$
$⇔(x-2)(x+7)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)(t/m)
Vậy...
Giải các phương trình sau:
a, \(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
b, \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
Ta có : \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x-1+1\right)\left(x^2+x-1-1\right)=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2=25\)
<=> 2 trường hợp sảy ra là bằng 5 hoặc -5 nhé
a,
\(x^4+2x^3+3x^2+2x+1-3x^4-3x^2-3=0.\)
\(-2x^4+2x^3+2x-2=0\)
\(x^4-x^3-x+1=0\) " chia cả 2 vế cho -2 )
\(x^3\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^3-1\right)=0\)
\(\hept{\begin{cases}x=1\\x^3=1\end{cases}}\)
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
Giải các bất phương trình sau :
\(a.4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(b.\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
c. \(\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
Giải phương trình: \(\left(x+2\right).\left(x-3\right).\left(x^2+2x-24\right)=16x^2\)
(x + 2)(x - 3)(x2 + 2x - 24) = 16x2
<=> (x + 2)(x - 3)[(x + 1)2 - 25] = 16x2
<=> (x + 2)(x - 3)(x + 6)(x - 4) = 16x2
<=> (x2 + 8x + 12)(x2 - 7x + 12) = 16x2
<=> \(\left(x^2+0,5x+12+7,5x\right)\left(x^2+0,5x+12-7.5x\right)=16x^2\)
<=> \(\left(x^2+0,5x+12\right)^2-\left(7,5x\right)^2=16x^2\)
<=> \(\left(x^2+0,5x+12\right)^2=\left(8,5x\right)^2\)
<=> \(\left(x^2+9x+12\right)\left(x^2-8x+12\right)=0\)
<=> \(\left(x+\dfrac{9}{2}-\dfrac{\sqrt{33}}{2}\right)\left(x+\dfrac{9}{2}+\dfrac{\sqrt{33}}{2}\right)\left(x-2\right)\left(x-6\right)=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{\sqrt{33}-9}{2}\\x=\dfrac{-\sqrt{33}-9}{2}\\x=2\\x=6\end{matrix}\right.\)
Giải các phương trình sau
1. \(\left(x-1\right)\left(x+5\right)\left(x^2+4x+8\right)+40=0\)
2. \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15=0\)
Giải phương trình: \(\sqrt{\left(x^2+1\right)\left(x+3\right)\left(x^4+5\right)\left(x+7\right)}=\sqrt{\left(x+2\right)\left(x^4+4\right)\left(x+6\right)\left(x^2+8\right)}\)