cho x+y=m, x.y=n, tính giá tị biểu thức sau theo m ,n : x\(^3\)+y\(^3\)
cho x+y=m và x^2 + y^2=n. Tính giá tị biểu thức sau
P= x^3+y^3
\(\hept{\begin{cases}x+y=m\\x^2+y^2=n\end{cases}\Rightarrow x^2+2xy+y^2=m^2\Rightarrow xy=\frac{m^2-n}{2}}\)
P =\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=m.\left(n-\frac{m^2-2}{2}\right)\)
\(=m.\frac{3n-m^2}{2}=\frac{3mn-m^3}{2}\)
cho x+y = m và x.y=n, tính giá trị biểu thứ theo m, n :
1) x\(^2\)+ y \(^2\)
2) x\(^3\) + y \(^3\)
a) x2 + y2
= (x2 + 2xy + y2) - 2xy
= (x + y)2 - 2xy
= m2 - 2n
b) x3 + y3
= (x + y)(x2 - xy + y2)
= m (x2 + 2xy + y2 - 3xy)
= m [(x + y)2 - 3xy]
= m . [ m2 - 3n ]
Tính giá trị biểu thức : M=x^3 - y^3 Biết x-y=4 và x.y=3
Ta có: \(x-y=4\Rightarrow\left(x-y\right)^2=16\)
\(\Rightarrow x^2-2xy+y^2=16\Rightarrow x^2+y^2=16+2xy=16+2.3=22\)
\(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=4.\left(22+3\right)=100\)
Cho x+ y = m và x.y = n.Tính giá trị các biểu thức sau theo m,n.
c) x7 + y7
\(x^2+y^2=\left(x+y\right)^2-2xy=m^2-2n\\ x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=m^3-3mn\\ \Rightarrow x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)=\left(m^3-3mn\right)\left(m^2-2n\right)-n^2m\\ \Rightarrow x^7+y^7=\left(x^2+y^2\right)\left(x^5+y^5\right)-x^2y^2\left(x^3+y^3\right)=.....\)
1 . Cho x+y=a và x.y=b . Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
2 . Cho x+y=1 .Tính giá trị biểu thức x3 + y3 + 3xy và x-y=1 .Tính giá trị biểu thức x3 - y3 - 3xy
3 . Cho a+b=1 . Tính giá trị biểu thức : M = a3 + b3 + 3ab .( 12 + b2 ) + 6.a2 .b2 . ( a+b)
cho x+y=-3 và x.y=-28.tính giá trị các biểu thức theo m,n
a, x^2+y^2
b,x^3+y^3
c,x^4+y^4
\(a,x^2+y^2=\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
\(b,x^3+y^3=\left(x+y\right)^3-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(-3\right)^3-3.\left(-28\right).\left(-3\right)=-279\)
\(c,x^4+y^4=\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2\)
\(=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-6\left(xy\right)^2\)
\(=\left(-3\right)^4-4.\left(-28\right).65-6.\left(-28\right)^2=2657\)
cho x+y=3 x.y=5 tính giá trị các biểu thức sau a) x^2+y^2. b) x^3+y^3 c) x^4+y^4
Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được
Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý
a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)
b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)
x+y=m,ny=n .tính giá trị biểu thức sau theo m và n
a,x^4+y^4
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
\(=\left(m^2-2n\right)^2-2n^2=m^4-4m^2n+4n^2-2n^2=m^4-4m^2n+2n^2\)
a) Cho x+ y = 7. Tính giá trị của biểu thức sau : M = ( x + y )^3 + 2x^2 + 4xy + 2 y^2
b) Cho x - y = -5. Tính giá trị của : N = ( x - y )^3 - x^2 + 2xy - y^2
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
\(a,M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3+2\left(x+y\right)^2\)
\(=\left(x+y\right)^2\left(x+y+2\right)=7^2.9=49.9=441\)
\(b,N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(x-y\right)^3-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=\left(x-y\right)^2.\left(x-y-1\right)\)
\(=\left(-5\right)^2\left(-5-1\right)=15.-6=-150\)