cho tam giác ABC có chu vi bằng 3 có các cạnh là a, b, c. Tìm giác trị nhỏ nhất của: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho tam giác ABC có chu vi bằng 2. Ký hiệu a, b, c là độ dài ba cạnh của tam giác.
Tìm giá trị nhỏ nhất của biểu thức \(\dfrac{a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{9c}{a+b-c}\)
Đặt b + c - a = x; c + a - b = y; a + b - c = z. (x, y, z > 0)
Ta có \(A=\dfrac{a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{9c}{a+b-c}=\dfrac{y+z}{2x}+\dfrac{2\left(z+x\right)}{y}+\dfrac{9\left(x+y\right)}{2z}=\left(\dfrac{y}{2x}+\dfrac{2x}{y}\right)+\left(\dfrac{z}{2x}+\dfrac{9x}{2z}\right)+\left(\dfrac{9y}{2z}+\dfrac{2z}{y}\right)\ge2\sqrt{\dfrac{y}{2x}.\dfrac{2x}{y}}+2\sqrt{\dfrac{z}{2x}.\dfrac{9x}{2z}}+2\sqrt{\dfrac{9y}{2z}.\dfrac{2z}{y}}=2+3+6=11\).
Dấu "=" xảy ra khi và chỉ khi \(3y=2z=6x\Leftrightarrow3\left(c+a-b\right)=2\left(b+c-a\right)=6\left(a+b-c\right)\)
\(\Leftrightarrow a=\dfrac{5}{6};b=\dfrac{2}{3};c=\dfrac{1}{2}\).
cho a,b,c là độ dài 3 cạnh của một tam giác và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}<
\dfrac{a+b+c}{abc}\)
( bên trên là nhỏ hơn hoặc bằng )
Hãy tính số đo các góc của tam giác này
`1/a^2+1/b^2+1/c^2<=(a+b+c)/(abc)`
`<=>1/a^2+1/b^2+1/c^2<=1/(ab)+1/(bc)+1/(ca)`
`<=>2/a^2+2/b^2+2/c^2<=2/(ab)+2/(bc)+2/(ca)`
`<=>1/a^2-2/(ab)+1/b^2+1/b^2-2/(bc)+1/c^2+1/c^2-2/(ac)+1/a^2<=0`
`<=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2<=0`
Mà `(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2>=0`
`=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2=0`
`<=>1/a=1/b=1/c`
`<=>a=b=c`
`=>` tam giác này là tam giác đều
`=>hata=hatb=hatc=60^o`
Áp dụng bđt cosi với hai số dương:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\) ; \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc}\) ; \(\dfrac{1}{a^2}+\dfrac{1}{c^2}\ge\dfrac{2}{ac}\)
\(\Rightarrow2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\) (*)
Theo giả thiết có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}\) (2*)
Từ (*), (2*) ,dấu = xảy ra \(\Leftrightarrow a=b=c\)
=> Tam giác chứa ba cạnh a,b,c thỏa mãn gt là tam giác đều
=> Số đo các góc là 60 độ
Xét tam giác ABC có độ dài các cạnh đối diện 3 góc A,B,C là a,b,c. CMR
\(r_a=\dfrac{2S}{b+c-a}=p.tan\dfrac{A}{2}\) với ra là bán kính đường tròn bàng tiếp góc A , p là nửa chu vi, S là diện tích của tam giác ABC
1. Cho a,b,c>0 và a+b+c=1. Tìm giá trị nhỏ nhất của:
\(M=\dfrac{1}{1-2\left(ab+bc+ca\right)}+\dfrac{1}{abc}\)
2. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: AB.BP+AC.CN=BC2
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH.MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\text{≤}\dfrac{1}{64}S_3\)
Tham khảo:
Tìm GTNN của M=1/1-2(ab+bc+ac)+1/abc - thu phương
1.
\(M=\dfrac{1}{1-2\left(ab+bc+ca\right)}+\dfrac{a+b+c}{abc}=\dfrac{1}{1-2\left(ab+bc+ca\right)}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\)
\(M\ge\dfrac{1}{1-2\left(ab+bc+ca\right)}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{1-2\left(ab+bc+ca\right)}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)
\(M\ge\dfrac{9}{1-2\left(ab+bc+ca\right)+2\left(ab+bc+ca\right)}+\dfrac{7}{\dfrac{1}{3}\left(a+b+c\right)^2}=9+21=30\)
2.
a. Hai tam giác vuông BCN và ACM đồng dạng (chung góc C)
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{CN}{CM}\Rightarrow CN.AC=BC.CM\) (1)
Hai tam giác vuông ABM và CBP đồng dạng (chung góc B) (1')
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BM}{BP}\Rightarrow AB.BP=BC.BM\) (2)
Cộng vế (1) và (2):
\(AB.BP+AC.CN=BC\left(CM+BM\right)=BC^2\)
b.
Từ (1') \(\Rightarrow\widehat{BAM}=\widehat{BCP}\Rightarrow\) hai tam giác vuông ABM và CHM đồng dạng
\(\Rightarrow\dfrac{AM}{CM}=\dfrac{BM}{HM}\Rightarrow AM.HM=BM.CM\le\dfrac{1}{4}\left(BM+CM\right)^2=\dfrac{1}{4}BC^2\)
Dấu "=" xảy ra khi và chỉ khi \(BM=CM\) hay tam giác ABC cân tại A
\(\Rightarrow\) A nằm trên trung trực BC
Câu c nhìn là thấy đề sai, \(\Leftrightarrow S_1S_2\le\dfrac{1}{64}\) chỉ cần tam giác ABC đủ lớn thì \(S_1;S_2>1\) BĐT này sẽ sai ngay
Cho tam giác ABC đều có cạnh bằng a. Gọi đường vuông góc từ điểm M nằm trong tam giác đến các cạnh BC, CA, AB lần lượt là MD, ME, MF. Xác định vị trí của M để $\dfrac{1}{MD}+\dfrac{1}{ME}+\dfrac{1}{MF}$ đạt giá trị nhỏ nhất, tính giá trị đó
cho a,b,c là cạnh của 1 tam giác có chu vi =1.Chứng minh rằng: a2+b2+c2+4abc≤\(\dfrac{1}{2}\)
Tham khảo:
https://hoc24.vn/cau-hoi/cho-a-b-c-la-do-dai-ba-canh-cua-mot-tam-giac-va-thoa-man-he-thuc-a-b-c-1-cmr-a2-b2-c2-12.139261258302
Cho tam giác ABC có \(\widehat{A}=2\widehat{B}\) , \(\widehat{C}\) tù và các cạnh đều là số nguyên dương. Tìm giá trị nhỏ nhất của chu vi tam giác ABC.
-Giúp với ạ.
Cho a,b,c là 3 cạnh của tam giác, p là nửa chu vi.
CMR: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Ta có :
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{2}{c}\)
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{p-a+p-c}=\dfrac{2}{a}\)
\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{p-c+p-a}=\dfrac{2}{b}\)
Cộng từng về ta có đpcm
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
Áp dụng:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2p-a-b}\)
Mà \(2p=a+b+c\)
\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\)
Tương tự \(\Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\)
\(\Rightarrowđpcm\)
bạn chứng minh :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( chứng minh tương tự )
ta có: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2p-a-b}\)
mặt khác : \(p=\dfrac{a+b+c}{2}\Leftrightarrow2p=a+b+c\)
\(\Leftrightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\left(1\right)\)
Chứng minh tương tự ta có:
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\left(2\right)\)
\(\dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{4}{b}\left(3\right)\)
Cộng từng vế (1),(2),(3), ta có:
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge2\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(đpcm\right)\)
Cho tam giác ABC
a) Tìm trên cạnh AB điểm M sao cho \(\dfrac{AM}{MB}=\dfrac{2}{3}\); tìm trên cạnh AC điểm N sao cho \(\dfrac{AN}{NC}=\dfrac{2}{3}\)
b) Vẽ đoạn thẳng MN. Hỏi rằng hai đường thẳng MN và BC có song song với nhau không ? Vì sao ?
c) Cho biết chu vi và diện tích tam giác ABC thứ tự là P và S. Tính chu vi và diện tích tam giác AMN ?