Bài 1: Chứng minh:
\(1+3+3^2+...+3^{119}\)chia hết cho 13
Chứng minh:
S= 1+5+...+5^119 chia hết cho 6, 13, 31
S=3+3^2+...+3^60 chia hết cho 13, 40
Chứng minh : A=1+3+3^2+3^3+....+3^119 chia hết cho 13
\(^{A=1+3+3^2+3^3+...+3^{119}}\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(^{=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)}\)
\(^{=13+3^3.13+...+3^{117}.13}\)
\(13\left(1+3^3+...+3^{117}\right)\)chia hết cho 13
=>A chia hết cho 13
chứng minh rằng:
E=1+3+3^2+3^3+...+3^119 chia hết cho 13
giúp tui nha
E = 1 + 3 + 32 + 33 +.....+3119
E = ( 1 + 3 + 32) +....+ ( 3117 + 3118+ 3119)
E = 13 + ......+ 3117.( 1 + 3 + 32)
E = 13 +.....+ 3117 . 13
E = 13. ( 30 + ....+ 3117)
13 ⋮ 13 ⇒ 13. (30 +....+3117) ⋮ 13 ⇒ E = 1 +3+32+ ....+3119⋮13(đpcm)
=\(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
= \(13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
=\(13+3^3.13+...+3^{117}.13\)
=\(13.\left(1+3^2+...+3^{117}\right)\) chia hết cho 13
Cho M= 1+3+3^2+3^3+..+3^118+3^119
Chứng minh rằng M chia hết cho 13
M=1+3+3^2+3^3+^3+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=13+3^3(1+3+3^2)+...+3^117(1+3+3^2)
=13+3^3.13+..+3^117.13
=13(1+3^3+...+3^117) chia hết cho 13
Vậy Mchia hết cho 13
ai chơi truy kích thì kết bạn vs mình nha
rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván
ai chơi truy kích
kb với mình mình k cho mình chưa có bạn
A = 119 +118 +117 +... +11+1. Chứng minh rằng A chia hết cho 5
B = 2 + 22 + 23 +... + 260 . Chứng minh rằng B chia hết cho 7 và 15
C = 3 + 33 + 35 +... + 31991 . Chứng minh rằng C chia hết cho 13 và 41
mình cần gấp giúp mình với
giúp mình với mình chuẩn bị phải nộp bài rồi T~T
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
chứng minh : A = 1+3+32+33+...+3119 chia hết 13
=> A=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=> A=13+33(1+3+32)+...+32017(1+3+32)
=> A=13+33.13+...+32017.13
=> A=13(1+33+...+32017) chia hết cho 13
D=1+3+3^2+3^3+...+3^119.Chứng minh rằng:Dchia hết cho 13
\(D=1+3+3^2+...+3^{119}\)
\(=\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=13\left(1+...+3^{117}\right)⋮13\)
B=3+3^2+3^3+...+3^118+3^119+3^120
CHỨNG MINH RẰNG B CHIA HẾT CHO 13
\(B=3+3^2+3^3+...+3^{118}+3^{119}+3^{120}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\\ =3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).13⋮13\left(ĐPCM\right)\)
Bài 3: Chứng minh rằng với mọi số tự nhiên n thì:
1) 3 mũ n+2 - 2n+2 - 3n - 2n chia hết cho 10 2) 3 mũ n+2 - 2 mũ n+4 + 3 mũ n + 2 mũ n chia hết cho 30
Bài 4: Chứng minh rằng: 3 mũ n+1 + 3 mũ n+2 + 3 mũ n+3 chia hết cho 13 với mọi số tự nhiên n.
Bài 5: Chứng minh rằng:
1) 2 + 2 mũ 2 + 2 mũ 3 + ...+ 2 mũ 60 chia hết cho 15 2) 1+ 3+ 3 mũ 2 + 3 mũ 3 + ...+ 3 mũ 119 chia hết cho 13