Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thúy Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 19:55

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

Valt Aoi
9 tháng 3 2022 lúc 8:12

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

Thư Phan đã xóa
Lưu Nguyễn Hà An
4 tháng 9 2023 lúc 13:43

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

giống Nguyễn Lê Phước Thịnh nhé

pham hoang
Xem chi tiết
Minh Triều
7 tháng 6 2015 lúc 13:03

ĐKXĐ

(x+1)(x+3)\(\ne\)0

<=>x+1\(\ne\)0 và x+3\(\ne\)0

<=>x\(\ne\)-1 và x\(\ne\)-3

Phương trình : \(\frac{x}{2\left(x+3\right)}+\frac{x}{2x+2}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)

<=>\(\frac{x}{2\left(x+3\right)}+\frac{x}{2\left(x+1\right)}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)

<=>\(\frac{x+1}{2\left(x+1\right)\left(x+3\right)}+\frac{x+3}{2\left(x+1\right)\left(x+3\right)}=\frac{8x}{2\left(x+1\right)\left(x+3\right)}\)

=>x+1+x+3=8x

<=>x+x-8x=-1-3

<=>-6x=-4

<=>x=2/3(thỏa ĐKXĐ)

Vậy S={2/3}

 

Nguyễn Thị Việt Phương
Xem chi tiết
saobangngok
Xem chi tiết
phan tuấn anh
13 tháng 10 2016 lúc 20:10

hình như đề bài sai..mk thấy vế trái của cả 2 pt nó chả khác j nhau cả

saobangngok
13 tháng 10 2016 lúc 20:13

đúng mà 

có mỗi thiếu dấu = ở pt thứ 2 thôi

saobangngok
13 tháng 10 2016 lúc 20:24

hai vế của pt khác nhau mà

Cô gái thất thường (Ánh...
Xem chi tiết
Con Chim 7 Màu
2 tháng 3 2019 lúc 21:11

\(\Leftrightarrow\left(x^2-6x+9\right)^2-1-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-6x+10\right)-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2-6x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+x-7x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x+1\right)\left(x-7\right)=0\)

\(Vi:x^2-6x+10=0\Leftrightarrow\left(x-3\right)^2+1>0,\forall x\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

\(hay:x-7=0\Leftrightarrow x=7\)

\(V...\)

\(:)\)

Nguyễn Ngọc Mai
Xem chi tiết
Nhân Thiện Hoàng
11 tháng 2 2018 lúc 12:28

khó thể xem trên mạng

Nguyễn Ngọc Mai
11 tháng 2 2018 lúc 12:31

bài 1 câu a bỏ x= nhé !

Khanh dốt toán :((
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2021 lúc 17:29

\(\Leftrightarrow x\left(x-2\right)\left(x^2+x-6\right)\le0\)

\(\Leftrightarrow x\left(x-2\right)^2\left(x+3\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\-3\le x\le0\end{matrix}\right.\)

Nghi Tăng
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
23 tháng 12 2017 lúc 17:45

Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2

<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0

<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0

<=> x4 - x3 - x2 - 5x - 2 = 0 

Phan uyển nhi
Xem chi tiết
Ngô Thành Chung
30 tháng 4 2021 lúc 21:13

3x2 - 12x - |x - 2| > 12

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 1:13

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)