( 36 x bình +12x +1) +(36x bình -12x +1 ) - 2.(1+6x ).(1-6x)
Rút gọn
Tìm x biết
1) 8x ^ 3 - 12x ^ 2 + 6x - 1 = 0
2) x ^ 3 - 6x ^ 2 + 12x - 8 = 27
3) x ^ 2 - 8x + 16 = 5 * (4 - x) ^ 3
4) (2 - x) ^ 3 = 6x(x - 2)
5) (x + 1) ^ 3 - (x - 1) ^ 3 - 6 * (x - 1) ^ 2 = - 10
6) (3 - x) ^ 3 - (x + 3) ^ 3 = 36x ^ 2 - 54x
1) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
2) \(x^3-6x^2+12x-8=27\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\)
3) \(x^2-8x+16=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow5\left(4-x\right)=1\)
\(\Leftrightarrow4-x=\dfrac{1}{5}\)
\(\Leftrightarrow x=4-\dfrac{1}{5}\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
4) \(\left(2-x\right)^3=6x\left(x-2\right)\)
\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)
\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)
\(\Leftrightarrow8-x^3=0\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)
\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-10+4\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\dfrac{-6}{12}\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)
\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)
\(\Leftrightarrow-54x-2x^3=36x^2-54x\)
\(\Leftrightarrow-2x^3=36x^2\)
\(\Leftrightarrow-2x^3-36x^2=0\)
\(\Leftrightarrow-2x^2\left(x+18\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)
Viết bình phương của 1 tổng hay 1 hiệu a) x² + 6x + 9 b) x² - 12x +36 c) a² - 2ab + b² d) m²+ 2mn +n²
\(a,=\left(x+3\right)^2\\ b,=\left(x-6\right)^2\\ c,=\left(a-b\right)^2\\ d,=\left(m+n\right)^2\)
Cho biểu thức \(A=\left(\frac{6x+1}{x^2-6}+\frac{6x-1}{x^2+6x}\right)\frac{x^2-36}{12x^2+12}\left(x\ne0;x\ne\pm6\right)\)
1, Rút gọn biểu thức A
2, Tính giá trị biểu thức A với \(x=\frac{1}{\sqrt{9+4\sqrt{5}}}\)
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
Rút gọn phân thức sau: a) (3x-6)/(x^3-6x^2+12x-8) b) (x^3+2x^2)/(x^3+6x^2+12x+8)
a: \(=\dfrac{3\left(x-2\right)}{\left(x-2\right)^3}=\dfrac{3}{\left(x-2\right)^2}\)
b: \(=\dfrac{x^2\left(x+2\right)}{\left(x+2\right)^3}=\dfrac{x^2}{\left(x+2\right)^2}\)
Rút gọn các phân thức sau :
A) 2x2+2x\x2-2x+1
B) 4x3-4x\6x2-6x
C) 25-(x+1)2\x2+12x+36
D) x2+4x+4
Cho biểu thức:
A=\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\frac{x^2-36}{12x^2+12}\) (Với \(x\ne0;x\ne\pm6\))
a) Rút gọn biểu thức A
b) Tìm giá trị biểu thức A với \(x=\frac{1}{\sqrt{9+4\sqrt{5}}}\)
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
Rút gọn nha các cậu
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\times\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(A=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}\times\frac{1}{12\left(x^2+1\right)}\)
\(A=\frac{12\left(x^2+1\right)}{x}\times\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
Rút gọn biểu thức sau:
a)M=\(3x-\sqrt[3]{27^3+27x^2+9x+1}\)
b)N=\(\sqrt[3]{8x^3+12x^2+6x+1}-\sqrt[3]{x^3}\)
a: Sửa đề: \(M=3x-\sqrt[3]{27x^3+27x^2+9x+1}\)
\(=3x-\sqrt[3]{\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3}\)
\(=3x-\sqrt[3]{\left(3x+1\right)^3}\)
\(=3x-3x-1=-1\)
b: \(N=\sqrt[3]{8x^3+12x^2+6x+1}-\sqrt[3]{x^3}\)
\(=\sqrt[3]{\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3}-x\)
\(=\sqrt[3]{\left(2x+1\right)^3}-x\)
=2x+1-x
=x+1
Rút gọn phân thức
A)2x^2+2x\x^2-2x+1
B) 4x^3-4x \6x^2-6x
C)25-(x+1)^2\x^2+12x+36
D)x^2+5x+6\x^2+4x+4
(Giải gấp dùm mình với nha 13 h mình cần)
b: \(=\dfrac{4x\left(x-1\right)\left(x+1\right)}{6x\left(x-1\right)}=\dfrac{2\left(x+1\right)}{3}\)
c: \(=\dfrac{\left(5-x-1\right)\left(5+x+1\right)}{\left(x+6\right)^2}=\dfrac{\left(4-x\right)\left(x+6\right)}{\left(x+6\right)^2}=\dfrac{4-x}{x+6}\)
d: \(=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\dfrac{x+3}{x+2}\)