Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Yết
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 22:43

D

Nguyễn Lê Nhật Linh
Xem chi tiết
Miner Đức
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 14:54

1.

\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)

\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)

\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)

2.

Đề bài thiếu, cos?x

Và x thuộc khoảng nào?

3.

\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)

\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)

\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)

4.

\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)

\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)

Lê Thúy Kiều
Xem chi tiết
Hồng Phúc
25 tháng 6 2021 lúc 9:40

1. \(D=R\)

2. \(sinx\ne0\Leftrightarrow x\ne k\pi\Rightarrow D=R\backslash\left\{k\pi|k\in R\right\}\)

3. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+\dfrac{k\pi}{2}|k\in R\right\}\)

4. \(cos\left(x+\dfrac{\pi}{4}\right)\ne0\Leftrightarrow x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+k\pi|k\in R\right\}\)

tanhuquynh
Xem chi tiết
hien nguyen
Xem chi tiết
Akai Haruma
25 tháng 10 2021 lúc 13:38

Lời giải:
ĐKXĐ: \(\left\{\begin{matrix} \cos 2x+1\neq 0\\ \sin x\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x\neq \pm \pi +2k\pi \\ x\neq n\pi \end{matrix}\right.\) với mọi $k,n\in\mathbb{Z}$

\(\Leftrightarrow \left\{\begin{matrix} x\neq \frac{k}{2}\pi, \text{k nguyên lẻ} \\ x\neq n\pi, \text{n nguyên bất kỳ} \end{matrix}\right.\)

Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 16:15

a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)

\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)

=>\(-\sqrt{2}< =y< =\sqrt{2}\)

\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1

=>x+pi/4=-pi/2+k2pi

=>x=-3/4pi+k2pi

\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1

=>x+pi/4=pi/2+k2pi

=>x=pi/4+k2pi

b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)

\(=sin\left(x+\dfrac{pi}{3}\right)+3\)

-1<=sin(x+pi/3)<=1

=>-1+3<=sin(x+pi/3)+3<=4

=>2<=y<=4

y min=2 khi sin(x+pi/3)=-1

=>x+pi/3=-pi/2+k2pi

=>x=-5/6pi+k2pi

y max=4 khi sin(x+pi/3)=1

=>x+pi/3=pi/2+k2pi

=>x=pi/6+k2pi

c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)

\(=2sin\left(2x-\dfrac{pi}{6}\right)\)

-1<=sin(2x-pi/6)<=1

=>-2<=y<=2

y min=-2 khi sin(2x-pi/6)=-1

=>2x-pi/6=-pi/2+k2pi

=>2x=-1/3pi+k2pi

=>x=-1/6pi+kpi

y max=2 khi sin(2x-pi/6)=1

=>2x-pi/6=pi/2+k2pi

=>2x=2/3pi+k2pi

=>x=1/3pi+kpi

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2021 lúc 21:11

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)