a, (x^2 + 2x + 3)(x + 2)
b, (x^2 + xy + y^2)(x - y)
c, (x + y)(x^2 - xy + y^2)
*Cộng các phân thức sau: a) x^2/x+1 + 2x/x^2-1 + 1/1+x+1 b) 2x+y/2x^2-y + 8y/y^2-4x^2+2x-y/2x^2+xy c) 1/x-y +3xy/y^3-x^3 + x-y/x^2+xy+y^2
a, \(\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{1}{x+1}+1\)
\(=\frac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^3-x^2-2x+x-1-x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^3-2x^2-x-2}{\left(x-1\right)\left(x+1\right)}\)
tính giá trị biểu thức
a) A=x^2-y+xy^2 với x=-5,y=2
b) B=3x^3-2y^3-6x^2y^2+xy với x=2/3 , y=1/2
c) C= 2x+xy^2-x^y-2y với x=-1/2, y=-1/3
a, x^2 +2xy^2+y^3/ 2x^2 +xy -y^2=xy+x^2/2x-y
b, x^2 + 3xy +2y^2 /x^3 +2x^2y-xy^2 -2y^3= 1/2x-7
Phân tích các đa thức sau thành nhân tử:
a) 2 ( x - 1 ) 3 - 5 ( x - 1 ) 2 - (x - 1);
b) x ( y - x ) 3 - y ( x - y ) 2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x ( x + y ) 2 - y ( x + y ) 2 + y 2 (x - y).
a,(x+y)(x^2-xy+y^2)-(-x+y)(x^2+xy+y^2)
b,2x^3-6x^2+6x-2x
a. \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(-x+y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-\left(y^3-x^3\right)\)
\(=2x^3\).
b. \(2x^3-6x^2+6x-2=2\left(x^3-3x^2+3x-1\right)=2\left(x-1\right)^3\).
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
CMR nếu x+y+1=0 thì giá trị biểu thức sau là hằng số:
A=x3+x2y-xy2-y3+x2+2x+2y+3
B=x3+2x2y+xy2+x2+xy+x+y+5
C=x3+2xy(x+y)+y3+x2+y2+xy+2
x+y+1=0 suy ra x+y=1
Làm câu A nhé B,C tương tự
A= x^2.(x+y-2)-(xy+y^2-2y)+(y+x-1)=0-y.(x+y-2)+1=1
Hok tốt
sory, chưa lại
x+y=-1
\(A=x^2.\left(x+y\right)-y^2.\left(x+y\right)+x^2+2x+2y+3\)
\(A=x^2.\left(-1\right)-y^2.\left(-1\right)+x^2+2x+2y+3\)
\(A=-x^2+y^2+x^2+2\left(x+y\right)+3=y^2-2+3=y^2+1\)
????
Tính
a). \(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)
c) \(x+y+\dfrac{x^2+y^2}{x+y}\)
d) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)
a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)
\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)
\(=\dfrac{y\left(x+2y\right)}{xy}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)
\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)
\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)
\(=\dfrac{x^2-2xy+y^2}{x-y}\)
\(=\dfrac{\left(x-y\right)^2}{x-y}\)
\(=x-y\)