Với nhứng giá trị nguyên nào của k thì:
\(k\left(k^2-1\right)\left(k^2-4\right)\) chia hết cho 480
CHo hai phương trình: \(x^2+x+k-1=0\left(1\right)\) và \(x^2-\left(k+2\right)x+2k+4=0\left(2\right)\). Với giá trị nào của k thì 2 phương trình trên tương đương
\(y=\left(k+1\right)x+k\left(k\ne-1\right)\left(1\right) \)
\(y=\left(2k-1\right)x-k\left(k\ne\frac{1}{2}\right)\left(2\right)\)
Với giá trị nào của k thì đồ thị hàm số (1) và (2) cắt nhau tại gốc toạ độ
\(y=\left(k+1\right)x+k\left(k\ne-1\right)\left(1\right) \)
\(y=\left(2k-1\right)x-k\left(k\ne\frac{1}{2}\right)\left(2\right)\)
Với giá trị nào của k thì đồ thị hàm số (1) và (2) cắt nhau tại gốc toạ độ
với giá trị nào của k thì phương trình \(2x^2+\left(k-9\right)x+k^2+3k+4=0\) có nghiệm kép ( x là ẩn số )
Ta có: \(\Delta=-7k^2-42k+49\)
Để phương trình có nghiệm kép \(\Leftrightarrow\Delta=-7k^2-42k+49=0\) \(\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-7\end{matrix}\right.\)
Vậy ...
Cho 2 hàm số y = k + 2 (d1) và y = \(3kx+\left(k-3\right)\) với giá trị nào của k thì Đồ thị của 2 HS trên cắt nhau tại 1 điểm trên trục tung
Gọi A và B lần lượt là giao điểm của \(d_1\) và \(d_2\) với trục tung
\(\Rightarrow\left\{{}\begin{matrix}A\left(0;2\right)\\B\left(0;k-3\right)\end{matrix}\right.\)
Đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung khi và chỉ khi A trùng B
\(\Leftrightarrow2=k-3\)
\(\Leftrightarrow k=5\)
Bài 1: Cho hàm số\(y=x\sqrt{m-1}-\dfrac{3}{2}\).Tìm giá trị của m sao cho hàm số trên là hàm số bậc nhất
Bài 2: Với giá trị nào của k thì:
a)Hàm số \(y=\left(k^2-5k-6\right)x-13\) đồng biến?
b)Hàm số \(y=\left(2k^2+3k-2\right)x+3\) nghịch biến?
Bài 3: Cho hai hàm số bậc nhất y = 2x + k và y = (2m + 1)x + 2k - 3. Tìm điều kiện đối với m và k để hai đồ thị hàm số là:
a)Hai đường thẳng cắt nhau
b)Hai đường thẳng song song với nhau
c)Hai đường thẳng trùng nhau
Bài 4: Cho đường thẳng (d): y = (m - 3)x + 1 - m. Xác định m trong các trường hợp sau đây:
a) (d) cắt trục Ox tại điểm A có hoành độ x = 2
b) (d) cắt trục tung Ox tại điểm B có tung độ y = -3
c) (d) đi qua điểm C(-1 ; 4)
Cho hai hàm số \(y=\left(k-1\right)x+3\) và \(y=\left(2k+1\right)x-4\). Với giá trị nào của k thì đồ thị của hai hàm số là:
a, Hai đường thẳng cắt nhau
b, Hai đường thẳng song song
c, Hai đường thẳng nói trên có thể trùng nhau được không? Vì sao?
Bài 2: Xác định hàm số \(y=ax+b\) trong mỗi trường hợp sau:
a, Khi a=-2, đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(\sqrt{2}\)
b, Khi a=-4, đồ thị hàm số đi qua điểm \(A\left(-2;-2\right)\)
c, Đồ thị hàm số song song với đường thẳng \(y=-\sqrt{3}x\) và đi qua điểm \(B\left(1;3-\sqrt{3}\right)\)
2:
a: Thay x=0 và \(y=\sqrt{2}\) vào y=2x+b, ta được:
\(b+2\cdot0=\sqrt{2}\)
=>\(b=\sqrt{2}\)
b: Thay x=-2 và y=-2 vào y=-4x+b,ta được:
b-4(-2)=-2
=>b+8=-2
=>b=-10
c: Vì (d)//y=-căn 3*x nên a=-căn 3
=>\(y=-\sqrt{3}\cdot x+b\)
Thay x=1 và \(y=3-\sqrt{3}\) vào (d),ta được:
\(b-\sqrt{3}=3-\sqrt{3}\)
=>b=3
Trên mặt phẳng tọa độ cho đường thẳng (d) có phương trình: \(2kx+\left(k-1\right)y=2\)(k là tham số). Với giá trị nào của k thì đường thẳng (d) song song với đường thẳng \(y=\sqrt{3}x\) ?
Trên mặt phẳng tọa độ cho đường thẳng (d) có phương trình: \(2kx+\left(k-1\right)y=2\) (k là tham số). Với giá trị nào của k thì đường thẳng (d) song song với đường thẳng \(y=\sqrt{3}x\) ?
Với \(k=1\) không thỏa mãn
Với \(k\ne1\Rightarrow y=-\dfrac{2k}{k-1}x+\dfrac{2}{k-1}\)
Hai đường thẳng song song khi:
\(\left\{{}\begin{matrix}-\dfrac{2k}{k-1}=\sqrt{3}\\\dfrac{2}{k-1}\ne0\end{matrix}\right.\) \(\Rightarrow k=-3+2\sqrt{3}\)