Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Diễm
Xem chi tiết
Huy Trần Xuân
Xem chi tiết
Lê Nguyễn Nhật Minh
Xem chi tiết
Green sea lit named Wang...
17 tháng 9 2021 lúc 20:25

ừ chie cần k vaod chữ đúng thôi

OH-YEAH^^ đã xóa
Green sea lit named Wang...
17 tháng 9 2021 lúc 20:17

a,Đặt a+b-c=x, c+a-b=y, b+c-a=z

=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c

Ta có hằng đẳng thức:

(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)

=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3

=3(x+y)(x+z)(y+z)

=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)

=3.2a.2b.2c

=24abc

Khách vãng lai đã xóa
Lê Nguyễn Nhật Minh
17 tháng 9 2021 lúc 20:19

mình mới có tài khoản,vậy k cho bn chỉ cần k đúng thôi đk ^^? 

Khách vãng lai đã xóa
Thanh Trần Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 11:29

Bài 1: 

\(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(=1^3-3ab+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2=1\)

ĐINH NHẬT BẢO NHI
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 11:45

Ta có: \(\left(b-c\right)^3+\left(c-a\right)^3-\left(a-b\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(b-c+c-a\right)\left[\left(b-c\right)^2-\left(b-c\right)\left(c-a\right)+\left(c-a\right)^2\right]-\left(a-b\right)\left[1+3\left(b-c\right)\left(c-a\right)\right]\)

\(=\left(b-a\right)\left(b^2-3bc+3c^2+ab-3ac+a^2\right)-\left(a-b\right)\left(1+3bc-3ab-3c^2+3ac\right)\)

\(=\left(b-a\right)\left(b^2-3bc+3c^2+ab-3ac+a^2+1+3bc-3ab-3c^2+3ac\right)\)

\(=\left(b-a\right)\left(b^2-2ab+a^2+1\right)\)

\(=\left(b-a\right)^3+\left(b-a\right)\)

\(=b^3-3b^2a+3ba^2-a^3+b-a\)

Thương Đoàn
Xem chi tiết
nguyenduckhai /lop85
29 tháng 11 2021 lúc 13:09

M=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3

nguyenduckhai /lop85
29 tháng 11 2021 lúc 13:09

nè ban

Ngân Hoàng Xuân
Xem chi tiết
Trần Việt Linh
3 tháng 8 2016 lúc 11:36

\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Đặt a+b=x ; b+c=y; c+a=z ta có:

\(x^3+y^3+z^3-3xyz\)

=\(\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

=\(\left[\left(x+y\right)^3+z^3\right]-\left(3x^2y+3xy^2+3xyz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

xong thay vào

Nguyễn Phương Linh
Xem chi tiết
giang ho dai ca
12 tháng 7 2015 lúc 9:56

Đặt a+b = x ; b+c = y ; c+a = z

=> H = x^3 +y^3 +z^3 -3.x.y.z

         = [x+y]^3 -3.x^2.y -3.x.y^2+ z^3 - 3.x.y.z

          = {[x+y]^3+z^3} -3.x.y[x+y+z]

          = [x+y+z].{[x+y]^2-[x+y].z+z^2} +3.x.y[x+y+z]

          = [x+y+z] . [x^2+y^2+2.x.y-x.z-y.z+z^2+3.x.y]

           = [x+y+z]. [x^2+y^2+z^2-xy-y.z-x.z]

           = [a+b+b+c+c+a]. {[a+b]^2+[b+c]^2+[c+a]^2-[a+b].[b+c]-[a+b].[a+c] - [b+c].[c+a]}

            = 2.[a+b+c] .[a^2+b^2 +b^2 +c^2 +c^2 +a^2 +2.ab.+2.bc+2.ac-ab-b^2-ac-bc-a^2-ab-ac-bc-bc-c^2-ab-ac]

            = 2.[a+b+c].[a^2+b^2+c^2-ab-ac-bc]

Dung Nguyễn Thị Kim
3 tháng 2 2017 lúc 17:28

rút gọn a

(-a-b+c)-(-a-b-c)