Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Baby so cute >.<
Xem chi tiết
* Nhók EXO - L dễ thưng...
15 tháng 10 2017 lúc 12:42

ta có :

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\)

\(=\dfrac{2}{2\sqrt{1}}+\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+...+\dfrac{2}{2\sqrt{100}}\)

\(>\dfrac{2}{\sqrt{1}+\sqrt{2}}+\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{2}{\sqrt{3}+\sqrt{4}}+...+\dfrac{2}{\sqrt{100}+\sqrt{101}}\)

\(=2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{100}+\sqrt{101}}\right)\)

\(=2\left(\dfrac{\sqrt{1}-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}+...+\dfrac{\sqrt{100}-\sqrt{101}}{100-101}\right)\)

\(=2\left(\dfrac{\sqrt{1}-\sqrt{101}}{-1}\right)=2\left(\sqrt{101}-\sqrt{1}\right)=18,1\)

\(>18\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>18\)

 Mashiro Shiina
15 tháng 10 2017 lúc 12:38

10 chứ.Nếu là 10 tui làm cho nhé

Nguyễn Thu Trà
Xem chi tiết
....
Xem chi tiết
An Thy
11 tháng 6 2021 lúc 18:18

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)

 

missing you =
11 tháng 6 2021 lúc 18:14

cả 2 ý bạn trục căn thức ở mấu là xong nhé:

vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy

Thái Viết Nam
Xem chi tiết
Nguyễn Linh
17 tháng 10 2018 lúc 22:40

Rút gọn biểu thức chứa căn bậc hai

Đinh Hoàng Nhất Quyên
Xem chi tiết
....
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 6 2021 lúc 19:59

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:01

a: \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\dfrac{3}{2}\sqrt{2}+\dfrac{1}{2}\sqrt{2}-2\cdot3\sqrt{2}+\left|1-\sqrt{2}\right|\)

\(=2\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-3\sqrt{2}-1\)

b: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{18}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)

c: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\sqrt[3]{\dfrac{3}{4}\cdot\dfrac{9}{16}}=\sqrt[3]{\dfrac{27}{64}}=\dfrac{3}{4}\)

d: \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}=\sqrt[3]{\dfrac{54}{-2}}=-\sqrt[3]{27}=-3\)

e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}=0\)

George H. Dalton
Xem chi tiết
Giang Thủy Tiên
26 tháng 5 2018 lúc 10:46

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\ \dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\ .........\\ \dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+....+\dfrac{1}{\sqrt{100}}\)( 100 phân số \(\dfrac{1}{\sqrt{100}}\) )

hay \(A>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+....+\dfrac{1}{10}\)(100 phân số \(\dfrac{1}{10}\) )

\(\Rightarrow A>\dfrac{100}{10}\\ \Rightarrow A>10\)

KL : Vậy ....

Cong Anh Le
26 tháng 5 2018 lúc 9:09

cmr...............................

Phương Phạm
Xem chi tiết