cmr: \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1=\left(a^2+3a+1\right)^2\)
Cho :\(A=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x+3};B=\frac{a}{x\left(x+a\right)}+\frac{a}{\left(x+a\right)\left(x+2a\right)}+\frac{a}{\left(x+2a\right)\left(x+3a\right)}+\frac{1}{x+3a}\)CMR : A = B
\(^{3x^2\left(a^2+b^2\right)-3a^2b^2+3\left[x^2+\left(a+b\right)x+ab\right]\left[x\left(x-a\right)-b\left(x-a\right)\right]:2x^2=\dfrac{3}{2}x^2}\)
Tính giá trị
P=\(\left\{\left[ã-2\left(a+2\right)\right]\left[a\left(x-1\right)+2\right]+2\left(-a^2+4\right)3a^2.x\right\}:\left(-2ax\right)\)
Biết a=2 và x=1
Tính:
1, \(\left(a^2-1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)\
2,\(\left(a^6-3a^3+9\right)\left(a^3+3\right)\)
\(\left(a^2-1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)=\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)=\left[\left(a+1\right)\left(a^2-a+1\right)\right]\left[\left(a-1\right)\left(a^2+a+1\right)\right]=a^3+1+a^3-1=2a^3\)
\(2,\left(x^6-3x^2+9\right)\left(x^3+3\right)=\left(x^3+3\right)\left[\left(x^3\right)^2-3x^2+3^2\right]=x^9+3^3\)
xl mk lm nhầm , mk sửa lại nha \(\left(a^6-3a^3+9\right)\left(a^3+3\right)=\left(a^3+3\right)\left[\left(a^3\right)^2-3a^3+3^2\right]=a^9+27\)
Bài 6: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
giải phương trình với tham số a:
\(3x+\frac{x}{a}-\frac{3a}{a+1}=\frac{4ax}{\left(a+1\right)^2}+\frac{\left(2a+1\right)x}{a\left(a+1\right)^2}-\frac{3a^2}{\left(a+1\right)^3}\)
Bài 1: Chứng minh:
\(a^2+2\left(a+1\right)^2+3\left(a+2\right)^2+4\left(a+3\right)^2=\left(3a+5\right)^2\)
\(VT=a^2+2\left(a^2+2a+1\right)+3\left(a^2+4a+4\right)+4\left(a^2+6a+9\right)\)
\(=a^2+2a^2+4a+2+3a^2+12a+12+4a^2+24a+36\)
\(=10a^2+40a+50=\left(9a^2+30a+25\right)+\left(a^2+10a+25\right)\)
\(=\left(3a+5\right)^2+\left(a+5\right)^2\)
Em kiểm tra lại đề bài nhé!
Câu 1. Thu gọn và tính giá trị của các biểu thức sau:
a) \(A=5\left(\dfrac{3}{5}x+1\right)+\left(15x^2-5x\right):\left(-3x\right)-\left(3x+1\right)\)
b) \(B=\left(3a+2\right)^2+\left(3a-2\right)^2-2\left(3a+2\right)\left(3a-2\right)\)
a: \(=3x+5-3x+\dfrac{5}{3}-3x-1=3x+\dfrac{17}{3}\)
b: \(=\left(3a+2-3a+2\right)^2=4^2=16\)
Giải phương trình với tham số a:
\(3x+\dfrac{x}{a}-\dfrac{3a}{a+1}=\dfrac{4ax}{\left(a+1\right)^2}+\dfrac{\left(2a+1\right)x}{a\left(a+1\right)^2}-\dfrac{3a^2}{\left(a+1\right)^3}\).
cho a,b không âm thỏa mãn \(\left(a-b\right)^2=a+b+2\)
CMR: \(\left(1+\dfrac{a^3}{\left(b+1\right)^3}\right)\left(1+\dfrac{b^3}{\left(a+1\right)^3}\right)\le9\)
\(GT\Leftrightarrow a^2+b^2-2ab=a+b+2\)
\(\Leftrightarrow a^2+a+b^2+b=2\left(ab+a+b+1\right)\)
\(\Leftrightarrow a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow\dfrac{a}{b+1}+\dfrac{b}{a+1}=2\)
Đặt \(\left(\dfrac{a}{b+1};\dfrac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x;y\ge0\\x+y=2\end{matrix}\right.\)
\(\Rightarrow0\le xy\le1\)
\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+x^3y^3\)
\(P=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)
\(P=\left(xy\right)^3-6xy+9=xy\left[\left(xy\right)^2-6\right]+9\le9\)
Dấu "=" xảy ra khi \(xy=0\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)