Chứng minh: A= n3+6n2+8n chia hết cho 48 với n chẵn
Tìm a để đa thức P(x) chia hết cho đa thức Q(x) biết
P(x) = x4-5x2+4x+a
Q(x) = 2x+1
b. Chứng minh rằng:
n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
a, P(x):Q(x)=1/2x^3-1/4x^2-19/8x+51/16(dư a-51/16)=>Để P(x) chia hết cho Q(x) thì a-51/16 phải bằng 0 => a=51/16
b, n3 + 6n2 + 8n= n(n2 +6n +8)
= n(n2 + 2n + 4n + 8)
= n[ n(n + 2) + 4(n + 2) ]
= n(n + 2)(n + 4)
Vì n là số chẵn nên đặt n=2k (k thuộc Z) ta được:
2k(2k + 2)(2k + 4)
=8k(k + 1)(k +2)
Vì k, k+1, k+2 là ba số tự nhiên liên tiếp nên có một sò chia hết cho 2 và một sồ chia hết cho 3 => k(k+1)(k+4)⋮6
=> 8k(k+1)(k+4)⋮48 (đpcm)
chứng minh rằng với mọi n thuộc Z và n chẵn thì n3- 4n luôn chia hết cho 48
chứng minh rằng với mọi n thuộc Z và n chẵn thì n3- 4n luôn chia hết cho 48
vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8
mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6
vậy 8(m-1)m(m+1) chia hết cho 48
Chứng minh rằng: n3+6n2+8n chia hết cho 48 với mọi n chẵn
Chứng minh: a,\(n^3+6n^2+8n\) chia hết cho 48 ( với n chẵn)
b, \(n^4-10n^2+9\) chia hết cho 384 ( với n lẻ)
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a
chứng minh rằng với mọi số chẵn n ta có (n3 + 6n2 + 8n) chia hết cho 48
Chứng minh rằng :
a) \(n^3+6n^2+8n\) chia hết cho 48 với mọi số chẵn n
b) \(n^4-10n^2+9\) chia hết cho 384 với mọi số lẻ n
a)Đặt \(A=n^3+6n^2+8n\)
\(A=n\left(n^2+6n+8\right)\)
\(A=n\left(n^2+2n+4n+8\right)\)
\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)
\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn
b)Đặt \(B=n^4-10n^2+9\)
\(B=n^4-n^2-9n^2+9\)
\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ
BÀI 1 :Chứng minh
a) 2009^2010 không chia hết cho 2010
b) n^2 + 7n + 22 không chia hết cho 9 ( với mọi n thuộc N )
BÀI 2 : Cho a là số nguyên tố lớn hơn 3 . Chứng minh : a^2 - 1 chia hết cho 24
Bài 3 : Chứng minh n^3 + 6n^2 + 8n chia hết cho 48 với mọi số chẵn n
2009^2010đồng dư với 1 (theo mod 2010)
Chứng minh rằng:
a, \(\left(n^2+n-1\right)^2-1\) chia hết cho 24.
b, \(n^3+6n^2+8n\) chia hết cho 48 với n chẵn.
b) n3 + 6n2 + 8n
= n( n2 + 6n + 8)
= n( n2 + 2n + 4n + 8)
= n[ n( n +2) + 4( n +2)]
= n( n +2)( n + 4)
Do n chẵn nên ta đặt : 2k = n
Ta có : 2k( 2k +2)( 2k +4)
= 2k.2( k +1)2( k +2)
= 8k( k + 1)( k +2)
Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3
Suy ra : k( k + 1)( k +2) chia hết cho 6
Suy ra : 8k( k + 1)( k +2) chia hết cho 48
a) 24= 2.3.4
(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)
=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)
Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4
Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4