Cho \(a^2+b^2=1,c^2+d^2=1\) và ad + cb = 0
Chứng minh rằng ab + cd = 0
cho a^2+b^2=1 ; c^2+d^2=1 và ad+bc=0 chứng minh rằng : ad+cd=0
cho a^2+b^2=1 ; c^2+d^2=1 và ad+bc=0 chứng minh rằng : ad+cd=0
Cho a2 + b2 = 1 , c2 + d2 = 0 , ad + bc + 0 . Chứng minh : ab + cd = 0 .
Cho a^+b^2=1,c^2+d^2=1,ac+bd=0
chứng minh rằng: ab+cd=0
Dựa vào a^2 +b^2 = 1 và c^2+ d^2 = 1 và ac + bd +0
Ta có ab + cd = ab.1 + cd.1 = ab.(c^2 + d^2) + cd.(a^2+b^2)
= abc^2 + abd^2 + cda^2 + cdb^2
= ac(bc + da) + bd(ad + cb) = (ac+bd).(bc+da) = 0 . (bc+da) = 0
Vậy ab + cd =
1. Cho sáu điểm A,B,C,D,E,F. Chứng minh :
a) AB+BC+CD+DA=0
b) AB+DC+BD+CA=0
c) CD+BC+AB=AD
d) AB+CD=AD+CB
e) AD+BE+CF=AE+BF+CD=AF+BD+CE
1. Cho 2 đoạn thẳng AB và CD cắt nhau tại O ; AB=6,CD=4 . Chứng minh rằng trong 4 đoạn thẳng AC,CB,BD,DA tồn tai 2 đoạn thẳng nhỏ hơn 5
2.Cho tam giác ABC có AB>AC , tia phân giác của góc A cắt CB ở D . Trên đoạn thẳng AD lấy điểm E .. Chứng minh rằng : AB -AC>EB-EC
2.Trên tia AB lấy M sao cho AM = AC mà AC < AB nên AM < AB => M nằm giữa A,B
ΔAEC,ΔAEMcó AE chung ; AC = AM ;^CAE=^MAE(AE là phân giác góc BAC)
⇒ΔAEC=ΔAEM(c.g.c)=> EC = EM
=> EB - EC = EB - EM < MB (bđt tam giác đối vớiΔEMB) mà AB - AC = AB - AM = MB
Vậy AB - AC > EB - EC
lm đc bài 1 ko bn ,mình đang cần bài 1
Cho |ad|=|bc|, cd khác 0, c khác + - d. Chứng minh rằng :
\(\left|\frac{a^2-b^2}{c^2-d^2}\right|=\left|\frac{ab}{cd}\right|\)
Cho |ad|=|bc|, cd khác 0, c khác + - d. Chứng minh rằng :
\(\left|\frac{a^2-b^2}{c^2-d^2}\right|=\left|\frac{ab}{cd}\right|\)
đặt a=bk;c=dk
ta có:\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2\times k^2-b^2}{d^2\times k^2-d^2}=\frac{b^2\times\left(k^2-1\right)}{d^2\times\left(k^2-1\right)}=\frac{b^2}{d^2}\) (thêm dấu giá trị tuyệt đối đến hếtvế này)
ta có: \(\frac{ab}{cd}=\frac{bk\times b}{dk\times d}=\frac{b\times\left(k-1\right)}{d\times\left(k-1\right)}=\frac{b}{d}\)
Cho x>0.Chứng minh \(x+\frac{1}{x}\ge2\)
Áp dụng chứng minh :Nếu abcd=1 và a;b;c;d > 0 thì a2+b2+c2+d2+ab+ac+ad+bc+bd+cd \(\ge\) 10
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)
Dấu "=" xảy ra khi \(x=1\)
Bài 2:
Áp dụng BĐT AM-GM ta có:
\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)
\(ab+cd\ge2\sqrt{abcd}=2\) (2)
\(ac+bd\ge2\sqrt{acbd}=2\) (3)
\(ad+bc\ge2\sqrt{adbc}=2\) (4)
Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh
Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)
1) \(x+\frac{1}{x}\ge2\left(1\right)\)
<=> \(\frac{x^2+1}{x}\ge2\)
<=> x2 + 1 \(\ge\)2x
<=> x2 + 1 - 2x \(\ge\) 0
<=> (x - 1)2 \(\ge\)0 (2)
Bđt (2) đúng vậy bđt (1) được chứng minh
b) Áp dụng bđt AM-GM cho 10 số dương ta có:
a2+b2+c2+d2+ab+ac+ad+bc+bd+cd
\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)
\(=10\sqrt[10]{1}=10\left(đpcm\right)\)