CMR
ab.(a+b)-bc.(b+c)+ac.(a-c)=(a+b).(b+c).(a-c)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
\(b,\dfrac{ab}{a+3b+2c}=\left(\dfrac{1}{9}ab\right)\cdot\dfrac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\left(\dfrac{1}{9}ab\right)\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\cdot\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Cmtt: \(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\cdot\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+b}+\dfrac{b}{2}\right);\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\cdot\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
\(\Rightarrow VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)\\ \le\dfrac{1}{9}\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}\cdot\dfrac{3}{2}\left(a+b+c\right)=\dfrac{a+b+c}{6}\)
Dấu $"="$ khi $a=b=c$
CMR: (a-b)/(1+ab)+(b-c)/(1+bc)+(c-a)/(1+ac)=3(a-b)/(1+ab).(b-c)/(1+bc).(c-a)/(1+ac)
CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ac} + \frac{1}{3} \geq \frac{8}{9}(\frac{a}{b+c} + \frac{b}{a+c} +\frac{c}{a+b})\)
CMR:\((1+a+b+c)(1+ab+bc+ac) \geq 4\sqrt{2(a+bc)(b+ac)(c+ab)}\)
Cho a,b,c>0;a+b+c=3
CMR:(a^2+bc)/(b^2+ac)+(b+ac)/(c+ab)+(c^2+ac)/(a+ab)>=3
Cho a;b;c thỏa mãn \(a\ge b\ge c\) và ab+bc+ac=5
\(CMR:\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ac\right)\ge-4\)
CMR :
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}=\frac{a-b}{1+ab}-\frac{b-c}{1+bc}-\frac{c-a}{1+ac}\)
Là đương nhiên hai biểu thức trên bằng nhau , giống nhau y hệt
CMR: a) (a+1)(b+1)(c+1)=abc+ab+ac+bc+a+b+c+1
b) (a-1)(b-1)(c-1)=abc-ab-bc-ac+a+b+c-1
phân tích thôi mà qua facebook BnoHi mình chỉ
Cho a,b,c>0 CMR :
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}\le\dfrac{a+b+c}{2}\)
Áp dụng bđt cosi ta có:
`a+b>=2sqrt{ab}`
`=>(ab)/(a+b)<=(sqrt{ab})/2`
Chứng minh tt:
`(bc)/(b+c)<=(sqrt{bc})/2`
`(ca)/(a+c)<=(sqrt{ca})/2`
`=>VT<=(sqrt{ab}+sqrt{bc}+sqrt{ca})/2`
Áp dụng cosi:
`sqrt{ab}<=(a+b)/2`
`sqrt{bc}<=(b+c)/2`
`sqrt{ca}<=(c+a)/2`
`=>(sqrt{ab}+sqrt{bc}+sqrt{ca})/2<=(a+b+c)/2`
`=>VT<=(a+b+c)/2`
cho a,b,c là 3 cạnh của tam giác CMR : ab/a+b-c+bc/b+c-a+ac/a-b+c>=a+b+c
theo bđt tam giác thì VT>0
Chuyển 3 tử thành abc là xong