Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chicothelaminh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 23:03

\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3\)

\(=\left(a+b\right)^3+3\cdot c\cdot\left(a+b\right)^2+3\cdot c^2\left(a+b\right)+c^3\)

\(=a^3+3a^2b+3ab^2+b^3+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2+c^3\)

\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Lê Nguyễn Ngọc Mai
Xem chi tiết
Khải Nhi
11 tháng 7 2016 lúc 20:59

thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

a^3+b^3+c^3-3abc=0 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0 

câu 2:<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0 

luôn đúng do a+b+c=0

Khải Nhi
11 tháng 7 2016 lúc 21:02

câu 1:(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c3^+3(a+b)(ab+ac+bc+c2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

CHÚC BẠN HỌC TỐT^^

sinichi kudo
Xem chi tiết
từ khi sinh ra đã là đại...
11 tháng 8 2017 lúc 16:04

mk viết viết đề nha 

=a3+3a2b +3ab2+b3+3(a+b)2.c+3.(a+b).c2+c3

= a3+b3+c3+[ 3a2b+3a2b+3(a+b)3.c+3.(a+b).c2]

= a3+b3+c3+[3ab(a+b)+3(a+b)2c+3(a+b)c2]

= a3+b3+c3+3(a+b)[ ab+(a+b)c+c2]

= a3+b3+c3+3(a+b)(ab+ac+bc+c2)

= a3+b3+c3+3(a+b)[a(b+c)+c.(b+c)]

= a3+b3+c3+3(a+b)(b+c)(a+c)

=> dpcm 

Lê Thị Yến Ninh
Xem chi tiết
Vĩnh Thụy
31 tháng 8 2016 lúc 15:33

ta có (a+b)^3 =a^3 +b^3 +3ab(a+b) 

=>[(a+b) +c ]^3 =(a+b)^3 +c^3 +3c(a+b)[a+b+c) 
[(a+b) +c ]^3 = a^3+b^3 +3ab(a+b) +3c(a+b)(a+b+c)+c^3 
[(a+b) +c ]^3 =a^3+b^3+c^3 +3(a+b)[ab+c.(a+b+c) ] 
[(a+b) +c ]^3 = a^3+b^3+c^3 +3(a+b)[ ab+ca+cb+c^2] 
[(a+b) +c ]^3 = a^3+b^3+c^3 +3(a+b)[ a(c+b) +c(b+c)] 
[(a+b) +c ]^3 =a^3+b^3+c^3 +3(a+b)(b+c)(a+c) (vế trái)

Điều cần chứng minh giờ thì đã sáng tỏ! ^_^

Hung Nguyen
Xem chi tiết
sinichi kudo
Xem chi tiết
Đồng Hồ Cát 3779
Xem chi tiết
Đặng Minh Triều
17 tháng 6 2016 lúc 21:01

(a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3

=a3+b3+3ab.(a+b)+3(a+b)2c+3(a+b)c2+c3

=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

=a3+b3+c3+3(a+b)[a.(b+c)+c.(b+c)]

=a3+b3+c3+3(a+b)(b+c)(c+a) 

=>dpcm

Đặng Minh Triều
17 tháng 6 2016 lúc 20:59

 

P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)

=>2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)

=(52-1)(52+1)(54+1)(58+1)(516+1)

=(54-1)(54+1)(58+1)(516+1)

=(58-1)(58+1)(516+1)

=(516-1)(516+1)

=532-1

==>P=(532-1)/2

 

 

Đồng Hồ Cát 3779
17 tháng 6 2016 lúc 21:08

thanks anh Triều!

Dương Thị Thu Hiền
Xem chi tiết
Bùi Phúc An
Xem chi tiết
Thầy Giáo Toán
15 tháng 8 2016 lúc 21:56

Theo bất đẳng thức Cauchy-Schwarzt ta có \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}.\)
Mặt khác, \(a^2+b^2+c^2\ge ab+bc+ca\), do đó ta suy ra \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2.\)

Cao La Phương Đông
15 tháng 8 2016 lúc 21:56

P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

Mr Lazy
15 tháng 8 2016 lúc 22:15

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge3\sqrt[3]{\frac{a^3}{b}.\frac{a^3}{b}.b^2}=3a^2\)