giai pt:
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{2}\)
Rút gọn: (Giải chi tiết từng bước)
7) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
8) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
`a, (sqrt 28 - sqrt 12 - sqrt 7) sqrt 7 + 2 sqrt 21`.
`= sqrt(28.7) - sqrt(12.7) - sqrt(7.7) + 2 sqrt 21`.
`= sqrt(4. 7.7) - sqrt (12.7) - 7 + 2 sqrt 21`.
`= 14 - sqrt(4.3.7) - 7 + 2 sqrt 21`.
`= 7`.
`b, (sqrt99-sqrt18-sqrt11)sqrt11+3sqrt22`
`= sqrt(99.11)- sqrt(18.11)-sqrt(11.11) +3sqrt22`
`= sqrt(9.11.11)-sqrt(2.9.11)-11+3sqrt22`
`= 33 - 11 = 22`.
\(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)
=0
b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)
\(=\sqrt{3}+2-\sqrt{3}\)
=2
c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)
\(=16\sqrt{5}\)
e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)
\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
\(=-16\sqrt{3}\)
rút gọn các biểu thức
\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(\text{a)}\)\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-5\sqrt{10}\)
\(\Leftrightarrow10\)
\(\text{b)}\)\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-2\sqrt{21}-7+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-7\)
Cho hai biểu thức:
A= \(\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)}^2\)
B= \(\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\left(x>0;x\ne9\right)\)
a) Rút gọn A,B
b) Tìm các giá trị của x để A>B?
Help !!!
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)
\(=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\) khi
\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)
\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)
\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{21}\)
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
= \(14-2\sqrt{21}-7+2\sqrt{21}\) = \(7\)
\(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{21}\)
= \(33-3\sqrt{22}-11+3\sqrt{21}\) = \(22-3\sqrt{22}+3\sqrt{21}\)
Mình sẽ làm cụ thể một tí nhé:
a) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}\)
\(=7\)
b) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{21}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{21}\)
\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{21}\)
\(=22-3\sqrt{22}+3\sqrt{21}\)
thực hiện phép tính
a)\(3\sqrt{9-\sqrt{25}+2\sqrt{49}}\)
b)\(7\sqrt[3]{27}-\sqrt[3]{64}+2\sqrt[3]{8}\)
c)\(\left(\sqrt{28}+2\sqrt{14}+3\sqrt{7}\right)\left(\sqrt{7}-7\sqrt{8}\right)\)
d)\(\frac{6\sqrt{7}+\sqrt{12}}{2}+\sqrt{7}+\sqrt{67-12\sqrt{7}}\)
Bài 1:Tìn ĐKXĐ
a.\(\sqrt{\dfrac{2}{^{^{^{ }}}x^2}}\)
b.\(\sqrt{\dfrac{-3}{3x+5}}\)
Bài 2:
a.\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
b.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
c,\(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
Bài 1:
a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)
b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\)
mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)
Bài 2:
a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)
b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}\)
\(=21\)
c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=32\)
\(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\) (ĐK x>0; x\(\ne9\))
a)Rút gọn A và B
b) Tìm các giá trị của x để giá trị biểu thức A lớn hơn giá trị biểu thức B
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
rút gọn
A=\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
B=\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
C=\(\left(\sqrt{7}-\sqrt{10}\right)^2+\sqrt{280}\)
D=\(\dfrac{\sqrt{99}}{\sqrt{11}}+\sqrt{7}\cdot\sqrt{63}-\sqrt{\sqrt{81}}\)
E=\(\sqrt{27}\left(s-\sqrt{5}\right)^2\cdot\left(3\sqrt{48}\right)\)
giải chi tiết ra giúp mik nha,cảm ơn nhiều