\(\sqrt{\dfrac{225}{256}}\)
\(\sqrt{0,0196}\)
tính
a)\(\sqrt{\frac{225}{256}}\)
b)\(\sqrt{0,0196}\)
a)\(\sqrt{\left(\frac{15}{16}\right)^2}=\frac{15}{16}\)
b)\(\sqrt{\frac{196}{10000}}=\sqrt{\frac{14^2}{100^2}}=\frac{14}{100}\)
Tính:
a, \(\sqrt{49}\) . \(\sqrt{144}\) + \(\sqrt{256}\) : \(\sqrt{64}\)
b, 72 : \(\sqrt{2^2.36.3^2}\) - \(\sqrt{225}\)
Tính:
a, √49 . √144+ √256 : √64
= 7 . 12 + 16 : 8
= 84 + 2
= 86
b, 72 : √2^2.36.3^2- √225
= 72: 2.6.3-15
= -13
Cho \(x=\dfrac{\sqrt{2}-1}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{225}-\sqrt{224}}{224+225}\) . Chứng minh rằng \(x< \dfrac{7}{15}\) .
Tính:
\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\)
\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ =7.12+16:8\\ =84+2\\ =86\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\\ =72:\sqrt{1296}-25\\ =72:36-25\\ =2-25\\ =-23\)
Tính:
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{225}}\)
Giải:
Ta có tính chất tổng quát:
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
\(=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng vào biểu thức
\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)
\(=1-\frac{1}{\sqrt{225}}\)
Tính:
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{225}}\)
\(\sqrt[]{\dfrac{1}{125}}.\sqrt[]{\dfrac{32}{35}}:\sqrt[]{\dfrac{56}{225}}\)
\(\sqrt{\dfrac{1}{125}}.\sqrt{\dfrac{32}{35}}:\sqrt{\dfrac{56}{225}}=\sqrt{\dfrac{1}{125}.\dfrac{32}{35}:\dfrac{56}{225}}=\sqrt{\dfrac{36}{1225}}=\dfrac{6}{35}\)
tính \(B=\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{10}}+......+\dfrac{1}{\sqrt{220}+\sqrt{225}}\)
tính
a, \(\sqrt{169}\) - \(\sqrt{225}\)
b \(\dfrac{\sqrt{144}}{9}\)
c \(\sqrt{18}\) \(\div\) \(\sqrt{2}\)
a: \(\sqrt{169}-\sqrt{225}\)
\(=\sqrt{13^2}-\sqrt{15^2}\)
=13-15
=-2
b: \(\dfrac{\sqrt{144}}{9}\)
\(=\dfrac{\sqrt{12^2}}{9}\)
\(=\dfrac{12}{9}=\dfrac{4}{3}\)
c: \(\sqrt{18}:\sqrt{2}=\sqrt{\dfrac{18}{2}}=\sqrt{9}=3\)