Rút gọn A=/x+y/+/x-y/+2/x/ với x<y<0
B=/x+y/+/x-y/+2/x/ với x>y>0
Rút gọn: A=x^2/(x+y)(1-y)-y^2/(x+y)(1+x)-x^2y^2/(1+x)(1-y)
Giúp t với :')
A=\(\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}\)\(-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
A=\(\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1-y\right)\left(x+y\right)}\)
A=\(\frac{x^2+x^3-y^2+y^3-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1-y\right)\left(x+y\right)}\)
A=\(\frac{\left(x+y\right)\left(x-y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)-x^2y^2\left(x+y\right)}{\left(1+x\right)\left(1+y\right)\left(x+y\right)}\)
A=\(\frac{\left(x+y\right)\left(x-y+x^2-xy+y^2-x^2y^2\right)}{\left(x+y\right)\left(x+1\right)\left(1-y\right)}\)
A=\(\frac{x\left(x+1\right)-y\left(x+1\right)+y^2\left(1-x\right)\left(1+x\right)}{\left(x+1\right)\left(1-y\right)}\)
A=\(\frac{\left(x+1\right)\left(x-y+y^2-y^2x\right)}{\left(x+1\right)\left(1-y\right)}\)
A=\(\frac{-y\left(1-y\right)+x\left(1-y\right)\left(1+y\right)}{\left(1-y\right)}\)
A=\(\frac{\left(1-y\right)\left(-y+x+xy\right)}{1-y}\)=\(x-y+xy\)
Rút gọn vế sau rồi tính: A= (a+b)*(-x-y) - (a-y) * (b-x)/abxy*(xy + ay + ab +by)
Sau khi rút gọn xong hãy tính A với a= -2 b=3/2 x=1/3 y=-1
1) rút gọn biểu thức : A= \(\dfrac{2x}{x^2+xy}\)+\(\dfrac{6x}{x^2-y^2}\)+\(\dfrac{3}{y-x}\) với x khác 0 , x khác y , x khác -y
\(A=\dfrac{2x}{x\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3}{x-y}\)
\(=\dfrac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{2x-2y+6x-3x-3y}{\left(x-y\right)\left(x+y\right)}=\dfrac{5\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{5}{x+y}\)
1) Rút gọn biểu thứ
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A<1
Lời giải:
a) ĐK: $x\geq 0; y\geq 0; x\neq y$
\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$
$\Rightarrow A< 1$
rút gọn rồi tính giá trị biểu thức
A=x.(x+y)-y.(x+y) với x=-1/2;y=--2
A = x ( x + y ) - y ( x + y )
A = ( x + y ) ( x - y )
A = x\(^2\) - y\(^2\)
Tại x = \(\dfrac{-1}{2}\) và y = -2 ta có
\(\left(\dfrac{-1}{2}\right)^2-\left(-2\right)^2\) \(=\) \(\dfrac{-15}{4}\)
\(A=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
\(=x^2-y^2\)
Thay \(x=-\dfrac{1}{2}\) và \(y=-2\) vào biểu thức \(A\), ta có:
\(A=\left(-\dfrac{1}{2}\right)^2-\left(-2\right)^2\)
\(=\dfrac{1}{4}-4\)
\(=-\dfrac{15}{4}\)
Rút gọn biểu thức:
A= (x-y)²-2×(x²-xy-y²) giúp mk với ạ
\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)
\(=-x^2+3y^2\)
$B=\dfrac{2}{x+y} \sqrt{\dfrac{3(x+y)^{2}}{4}}$ với $x+y>0$;
Rút gọn
\(=\dfrac{2}{x+y}\cdot\dfrac{\sqrt{3}\left(x+y\right)}{2}=\sqrt{3}\)
B1: Rút gọn A=\(\left(\frac{x}{x-1}-\frac{1}{x^2}\right):\left(\frac{1}{x+1}+\frac{2}{x^2-1}\right)\)
B2: Rút gọn A=\(\left(\frac{x-y}{x+y}-\frac{x+y}{x-y}\right):\frac{-4y^2}{x-y}\)
Rút gọn biểu thức: A=(x-y)^2+(x+y)^2-2(x+y)(x-y)-4(y^2-1)
\(A=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4\left(y^2-1\right)\)
\(=\left(x-y-x-y\right)^2-4\left(y^2-1\right)\)
\(=\left(-2y\right)^2-4y^2+4=4\)
b1 : rút gọn biểu thức
a: x-y/y^2 nhân căn y^4/x^2 - 2xy + y^2 với x khác y
b: căn x- 2 căn x +1/x+ 2 căn x +1 với x > 0
b2: rút gọn rồi tính giá trị
a: B= căn (x+2) ^4 / (3-x)^2 + x^2+1/x+3 với x<3 và tính b khi x= 0.5
b: C = 5x - căn 8 + căn x^3 + 2x^2/ căn x+2 cới x > -2 và tính C khi x + - căn 2
c: D= căn 3(x+y)^2/4 nhân 2/x^2-y^2 với x khác y