3. So Sánh
\(\left(\dfrac{3}{8}\right)^5\) và \(\left(\dfrac{5}{243}\right)^5\)
Tìm x ∈ N biết :
a) \(8< 2^x\le2^9.2^{-5}\)
b)\(27< 81^3:3^x< 243\)
c)\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-3}{5}\right)^2\)
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
so sánh giá trị 2 biểu thức sau:
\(\left(4-\dfrac{12}{5}\right):\left(3-\dfrac{9}{5}\right)\)và \(4:\dfrac{12}{5}-3:\dfrac{9}{5}\)
Biểu thức thứ nhất
\(\dfrac{8}{5}:\dfrac{6}{5}=\dfrac{8}{6}=\dfrac{4}{3}\)
Biểu thức thứ hai:
\(\dfrac{5}{3}-\dfrac{5}{3}=0\)
Vậy biểu thức thứ nhất lớn hơn biểu thức thứ 2
Tìm \(x\) biết:
\(\left(\sqrt{3}\right)^x=243\)
\(0,1^x=1000\)
\(\left(\dfrac{1}{2}\right)^x=1024\)
\(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
\(5^{x-1}+5^{x+2}=3\)
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)
giải phương trình
a) \(5^x=4\)
b) \(5^{2-x}=8\)
c) \(\left(\dfrac{1}{3}\right)^{4+x}=243\)
d) \(\left(\dfrac{2}{3}\right)^x=\dfrac{3}{2}\)
a: \(5^x=4\)
=>\(x=log_54\)
b: \(5^{2-x}=8\)
=>\(2-x=log_58\)
=>\(x=2-log_58\)
c: \(\left(\dfrac{1}{3}\right)^{x+4}=243\)
=>\(3^{-x-4}=3^5\)
=>-x-4=5
=>-x=9
=>x=-9
d: \(\left(\dfrac{2}{3}\right)^x=\dfrac{3}{2}\)
=>\(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^{-1}\)
=>x=-1
Số nguyên \(x\) thỏa mãn \(\left(\dfrac{3}{4}-\dfrac{2}{3}\right)+\dfrac{5}{6}< x\le\dfrac{4}{5}-\left(\dfrac{3}{10}-\dfrac{5}{4}\right)\) là:
A. \(x=1\) B. \(x=0\) C. \(x=2\) D. \(x\in\left\{0;1\right\}\)
So sánh 3 phân số: \(\dfrac{9}{170};\dfrac{9}{230};\dfrac{53}{144}\)
Câu 1: D
Câu 3: 53/144>9/170>9/230
Tính R=\(\dfrac{\sqrt{\left(-\dfrac{2}{5}\right)^5.\left(-\dfrac{5}{8}\right)^3.5^2}}{\sqrt[3]{\left(-\dfrac{3}{4}\right)^3.\left(-\dfrac{5}{24}\right)^2.\left(-\dfrac{5}{3}\right)^4}}\)
\(R=\dfrac{\sqrt{\left(-\dfrac{2}{5}\cdot\dfrac{-5}{8}\right)^3\cdot5^2}}{\sqrt[3]{\dfrac{-3^3}{4^3}\cdot\dfrac{5^2}{2^6\cdot3^2}\cdot\dfrac{5^4}{3^4}}}\)
\(=\dfrac{\sqrt{\left(\dfrac{1}{4}\right)^3\cdot5^2}}{\sqrt[3]{\dfrac{-1}{3^3}\cdot\dfrac{25^3}{16^3}}}=\dfrac{5}{8}:\dfrac{-5}{3\cdot4}=\dfrac{5}{8}\cdot\dfrac{3\cdot4}{-5}=-\dfrac{3}{2}\)
Bài 8:
b)\(\left(\dfrac{-4}{3}\right)+\left(\dfrac{-2}{5}\right)+\left(\dfrac{-3}{2}\right)\)
c) \(\dfrac{4}{5}-\left(\dfrac{-2}{7}\right)-\dfrac{-7}{10}\)
d) \(\dfrac{2}{3}-\left[\left(\dfrac{-7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(b,=-\dfrac{40}{30}-\dfrac{12}{30}-\dfrac{45}{30}=-\dfrac{97}{30}\\ c,=\left(\dfrac{4}{5}+\dfrac{7}{10}\right)+\dfrac{2}{7}=\dfrac{3}{2}+\dfrac{2}{7}=\dfrac{25}{14}\\ d,=\dfrac{2}{3}+\dfrac{7}{4}+\dfrac{1}{2}+\dfrac{3}{8}\\ =\left(\dfrac{2}{3}+\dfrac{1}{2}\right)+\left(\dfrac{7}{4}+\dfrac{3}{8}\right)=\dfrac{7}{6}+\dfrac{17}{8}=\dfrac{79}{24}\)
c: \(\dfrac{4}{5}-\dfrac{-2}{7}-\dfrac{-7}{10}\)
\(=\dfrac{56}{70}+\dfrac{20}{70}+\dfrac{49}{70}\)
\(=\dfrac{125}{70}=\dfrac{25}{14}\)
Bài 1:
a,\(3^7\) : \(3^5\)- \(\left(\dfrac{5}{17}\right)^0\) b,\(\left(\dfrac{5}{2}\right)^{13}\) : \(\left(\dfrac{1}{2}+2\right)^3\) c, 8.\(\left(\dfrac{1}{4}\right)^3\) +\(\left(\dfrac{2}{27}\right)^0\) - \(\dfrac{1}{8}\)
Bài 2 :
a, \(\dfrac{3^4.4^4}{6^4}\) b,\(\dfrac{15^3}{10^3}\) c, \(\dfrac{4^2.12^5}{9^2.2^{10}}\) d, \(\dfrac{6^2+5.2^2+4}{15}\)
Bài 3 :
a, \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2}\) b,\(\dfrac{6^6+6^3.3^3+3^6}{-73}\)
Mọi người giúp mình nhé mình sẽ cho bạn 1 like
Bài 1:
a) \(3^7:3^5-\left(\dfrac{5}{17}\right)^0=3^{7-5}-1=3^2-1=9-1=8\)
b) \(\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{1}{2}+2\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{5}{2}\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{10}\)
c) \(8.\left(\dfrac{1}{4}\right)^3+\left(\dfrac{2}{27}\right)^0-\dfrac{1}{8}\)
\(=8.\dfrac{1}{64}+1-\dfrac{1}{8}\)
\(=\dfrac{1}{8}+1-\dfrac{1}{8}\)
\(=1\)
Bài 2:
a) \(\dfrac{3^4.4^4}{6^4}=\dfrac{3^4.\left(2^2\right)^4}{\left(2.3\right)^4}=\dfrac{3^4.2^8}{2^4.3^4}=\dfrac{2^8}{2^4}=2^4=16\)
b) \(\dfrac{15^3}{10^3}=\dfrac{\left(3.5\right)^3}{ \left(2.5\right)^3}=\dfrac{3^3.5^3}{2^3.5^3}=3^3:2^3=\dfrac{27}{8}\)
c) \(\dfrac{4^2.12^5}{9^2.2^{10}}=\dfrac{\left(2^2\right)^2.\left[3.\left(2^2\right)\right]^5}{\left(3^2\right)^2.2^{10}}=\dfrac{2^4.3^5.2^{10}}{3^4.2^{10}}=2^4.3=16.3=48\)
d) \(\dfrac{6^2+5.2^2+4}{15}=\dfrac{\left(2.3\right)^2+5.2^2+2^2}{15}=\dfrac{2^2.3^2+5.2^2+2^2}{15}=\dfrac{2^2\left(3^2+5+1\right)}{15}=\dfrac{2^2.15}{15}=2^2=4\)
Bài 3:
a) \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.-1}{\left[\dfrac{2}{5}.\left(\dfrac{-5}{12}\right)\right]^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3. \left(\dfrac{-3}{4}\right)^2.-1}{\left(\dfrac{-1}{6}\right)^2}\)
\(=\left(\dfrac{2}{3}\right)^3.\left[\left(\dfrac{-3}{4}\right).-6\right]^2.-1\)
\(=\left(\dfrac{2}{3}\right)^3.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}\right)^2.\dfrac{2}{3}.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}.\dfrac{9}{2}\right)^2.\dfrac{2}{3}.-1\)
\(=9.\dfrac{2}{3}.-1\)
\(=6.-1=-6\)
b) \(\dfrac{6^6+6^3.3^3+3^6}{-73}=\dfrac{\left(2.3\right)^6+\left(2.3\right)^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^6+3^6}{-73}=\dfrac{3^6\left(2^6+2^3+1\right)}{-73}=\dfrac{3^6.73}{-73}=\dfrac{3^6}{-1}=\left(-3\right)^6\)
\(#Wendy.Dang\)
Lần sau bnn gửi từng bài thôi nha, chứ như vầy nhiều quá thì làm không nổi mất. đánh máy nãy giờ lú luôn gòi nè :))
Võ Ngọc Phương
Bài 3b, kết quả -(3)6 = - 729 em nhá chứ không phải (-3)6
hãy so sánh mỗi số sau
a) \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}\) và 1
b) \(\left(\dfrac{1}{5}\right)^{\sqrt{2}}\) và 1
a.
\(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}=\left(\dfrac{1}{\sqrt{5}}\right)^{-1,2}=\left(5^{-\dfrac{1}{2}}\right)^{-1,2}=5^{\left(-\dfrac{1}{2}\right).\left(-1,2\right)}=5^{0,6}>1\) do \(\left\{{}\begin{matrix}5>1\\0,6>0\end{matrix}\right.\)
b.
\(\left(\dfrac{1}{5}\right)^{\sqrt{2}}=\left(5^{-1}\right)^{\sqrt{2}}=5^{-\sqrt{2}}< 1\) do \(\left\{{}\begin{matrix}5>1\\-\sqrt{2}< 0\end{matrix}\right.\)
a: \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}=\left(\dfrac{1}{\sqrt{5}}\right)^{-\dfrac{6}{5}}=\left(1:\dfrac{1}{\sqrt{5}}\right)^{-\dfrac{5}{6}}=\left(\sqrt{5}\right)^{-\dfrac{5}{6}}\)
\(1=\left(\sqrt{5}\right)^0\)
mà -5/6<0 và \(\sqrt{5}>1\)
nên \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}>1\)
b: \(0< \dfrac{1}{5}< 1\)
=>\(\left(\dfrac{1}{5}\right)^{\sqrt{2}}< \left(\dfrac{1}{5}\right)^0=1\)