Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đỗ Mai Anh
Xem chi tiết
Lê Song Phương
2 tháng 5 2022 lúc 19:05

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 1 2017 lúc 5:05

*Xét phương trình  (m2 +1).x2 – (m- 6)x -  2= 0 có a= m2 + 1 >0  và c = -2 < 0 nên ac< 0 mọi m.

=>  Phương trình (1) luôn có nghiệm mọi m.

* Phương trình x 2 + m + 3 x - 1 = 0  có ac= 1. (-1) < 0 nên phương  trình này luôn có nghiệm mọi m.

* Xét (3) mx2 - 2x – m = 0  . Khi m= 0 thì (3) trở thành:  - 2x = 0 đây là phương trình bậc nhất có nghiệm duy nhất là x = 0.

* Xét (4) có :

∆ = - 2 m 2 - 4 . 2 - 1 - m = 4 m 2 + 8 + 8 m = 4 m 2 + 8 m + 4 + 4 = 4 m + 1 2 + 4 > 0   ∀ m

 Nên trình (4) luôn có 2 nghiệm phân biệt với mọi m.

Chọn C.

Yuya
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 6 2023 lúc 13:28

a: Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8=(2m-2)^2+8>0 với mọi m

=>PT luôn có hai nghiệm pb

b: PT có hai nghiệm trái dấu

=>2m-3<0

=>m<3/2

nguyễn văn quốc
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2023 lúc 13:51

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

Ngô Thành Chung
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 12:35

Lời giải:

PT có 2 nghiệm pb khi:

$\Delta'=m^2+m(2m+1)>0\Leftrightarrow m(3m+1)>0\Leftrightarrow m>0$ hoặc $m< \frac{-1}{3}(*)$

Theo định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{-(2m+1)}{m}\end{matrix}\right.\) . Khi đó:

$x_1^2+2x_1x_2^2+3x_2^2=4x_1+5x_2-1$

$\Leftrightarrow (x_1+x_2)^2+2x_2^2=4(x_1+x_2)+x_2-1$

$\Leftrightarrow 4+2x_2^2=7+x_2$

$\Leftrightarrow 2x_2^2-x_2-3=0$

$\Leftrightarrow x_2=\frac{3}{2}$ hoặc $x_2=-1$

$x_2=\frac{3}{2}$ thì $x_1=\frac{1}{2}$

$\frac{-(2m+1)}{m}=x_1x_2=\frac{3}{4}\Leftrightarrow m=\frac{-4}{11}$
$x_2=-1$ thì $x_1=3$

$\frac{-(2m+1)}{m}=x_1x_2=-3\Leftrightarrow m=1$

(hai giá trị trên đều thỏa mãn)

phamthiminhanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 9:49

Bài 2:

a: TH1: m=0

=>-x+1=0

=>x=-1(nhận)

TH2: m<>0

\(\text{Δ}=\left(m-1\right)^2-4m\left(1-m\right)\)

=m^2-2m+1-4m+4m^2

=5m^2-6m+1

=(2m-1)(3m-1)

Để phương trình có nghiệm thì (2m-1)(3m-1)>=0

=>m>=1/2 hoặc m<=1/3

b: Để phương trình có hai nghiệm phân biệt thì (2m-1)(3m-1)>0

=>m>1/2 hoặc m<1/3

c: Để phương trình có hai nghiệmtrái dấu thì (1-m)*m<0

=>m(m-1)>0

=>m>1 hoặc m<0

d: Để phương trình có hai nghiệm dương phân biệt thì

\(\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\\dfrac{-m+1}{m}>0\\\dfrac{1-m}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\0< m< 1\end{matrix}\right.\)

=>1/2<m<1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2018 lúc 18:16

Để phương trình x 2 - 2 m x + m + 2 = 0 có hai nghiệm dương phân biệt

⇔ Δ ' > 0 S > 0 P > 0 ⇔ − m 2 − 1. m + 2 > 0 2 m > 0 m + 2 > 0 ⇔ m 2 − m − 2 > 0 m > 0 m > − 2 ⇔ m < − 1 , m > 2 m > 0 m > − 2

Vậy: m > 2

Đáp án cần chọn là: A

Min Suga
Xem chi tiết
Thao Bui
Xem chi tiết
missing you =
8 tháng 3 2022 lúc 7:25

\(mx^2+\left(m-1\right)x+3-4m=0\left(1\right)\)

\(m=0\Rightarrow\)\(\left(1\right)\Leftrightarrow-x+3=0\Leftrightarrow x=3\left(ktm\right)\)

\(m\ne0\Rightarrow x1< 2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2-4m\left(3-4m\right)>0\\x1x2-2\left(x1+x2\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\\dfrac{3-4m}{m}-2.\left(\dfrac{1-m}{m}\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\-\dfrac{1}{2}< m< 0\\\end{matrix}\right.\)\(\Rightarrow m\in\phi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 11 2018 lúc 6:04

Đáp án: B

(m - 1) x 2  - 2mx + 3m - 2 = 0 (*)

Để phương trình (*) có hai nghiệm dương phân biệt thì:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)