Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 21:37

\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)

\(=x+y+z\)

Nguyễn Minh Hiền Trang
Xem chi tiết
Nguyễn Tuấn
16 tháng 3 2016 lúc 21:37

thay 1 vào tử, thấy: 
căn(5-x) = căn 4= 2; 
căn bậc 3(x^2+7)=căn bậc 3 của 8=2 
=> thêm bớt 2. 
Bài làm: 
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1) 
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1) 
Tính lim từng số hạng như thường.

Nguyễn Minh Hiền Trang
17 tháng 3 2016 lúc 20:42

Bạn trả lời rõ dùm mình với

Anh Duy
Xem chi tiết
Giang Thủy Tiên
1 tháng 12 2018 lúc 15:09

Đặt \(A=x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\\ =\left(x+y\right)^3+z^3-\left(3x^2y+3xy^3+3xyz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)\cdot z+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Đặt \(B=x^2+y^2+z^2-xy-yz-xz\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)}{x^2+y^2+z^2-xy-yz-xz}=x+y+z\)

Ly Phan
Xem chi tiết
Nguyễn Xuân Anh
16 tháng 11 2018 lúc 21:06

\(VT=x^3+y^3+z^3-3xyz.\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)=VP\left(đpcm\right)\)

Tạ Thị Mỹ Duyên
Xem chi tiết
Thiên Hàn
Xem chi tiết
Thiên Hàn
20 tháng 2 2019 lúc 20:47

@Nguyễn Việt Lâm

@Khôi Bùi

loan cao thị
Xem chi tiết
Đinh Thùy Linh
9 tháng 6 2016 lúc 6:28

a)

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right).\)

b) 

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=x^3+x^2y+x^2z+xy^2+y^3+y^2z+\)

\(+xz^2+yz^2+z^3-x^2y-xy^2-xyz-xyz-y^2z-yz^2-x^2z-xyz-xz^2=\)

\(=x^3+y^3+z^3-3xyz\)

duy Nguyễn
Xem chi tiết
Hồ Minh Phi
Xem chi tiết