Tìm các giá trị của m để PT: x2 -mx +m2 -m -3=0 có 2 nghiệm x1 x2 là độ dài các cạnh của tam giác vuông ABC có cạnh huyền BC=2
Tìm các giá trị của m để phương trình x 2 – mx + m 2 – m – 3 = 0 có hai nghiệm x 1 ; x 2 là độ dài các cạnh góc vuông của tam giác ABC tại A biết độ dài cạnh huyền BC = 2
A. m = 2 + 3
B. m = 3
C. m = 1 + 3
D. m = 1 - 3
Tìm m để phương trình x 2 - m x + m 2 - 3 = 0 có hai nghiệm x 1 , x 2 là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 là
A. m ∈ 0 ; 2
B. m = ± 2
C. m ∈ - 2 ; 0
D. m ∈ ∅
Phương trình x 2 - m x + m 2 - 3 = 0 có hai nghiệm x 1 , x 2 là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 khi và chỉ khi:
Δ = m 2 − 4 m 2 + 12 ≥ 0 S = x 1 + x 2 = m > 0 P = x 1 . x 2 > 0 x 1 2 + x 2 2 = 4 ⇔ 3 < m ≤ 4 m > 0 x 1 + x 2 2 − 2 x 1 x 2 = 4
⇔ 3 < m ≤ 2 m 2 − 2 m 2 − 3 = 4 ⇔ 3 < m ≤ 2 m 2 = 2 ⇔ m ∈ ∅
Đáp án cần chọn là: D
cho pt x2 - ( m + 2 )x + 3m - 3 = 0
gọi x1,x2 là hai nghiệm của phương trình. Tìm m sao cho x1,x2 là độ dài của một tam giác vuông có độ dài cạnh huyền bằng 5
Để phương trình có 2 nghiệm:
\(\Delta\ge0\Rightarrow\left[-\left(m+2\right)\right]^2-4.1.\left(3m-3\right)\ge0\\ \Leftrightarrow m^2+4m+4-12m+12\ge0\\ \Leftrightarrow m^2-8m+16\ge0\forall m\)
Theo Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left[-\left(m+2\right)\right]}{1}=m+2\\x_1.x_2=\dfrac{3m-3}{1}=3m-3\end{matrix}\right.\)
x1, x2 là độ dài của một giam giác vuông có cạnh huyền bằng 5.
Theo định lý Py-ta-go ta có:
\(x_1^2+x_2^2=5^2\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=25\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\\ \Leftrightarrow\left(m+2\right)^2-2.\left(3m-3\right)=25\\ \Leftrightarrow m^2+4m+4-6m+6-25=0\\ \Leftrightarrow m^2-2m-15=0\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
Vậy...
Cho phương trình x2 - 2mx +m2 - 1 = 0 (1), m là tham số. Tìm m để tồn tại một tam giác vuông nhận hai nghiệm x1 ,x2, của phương trình (1) làm độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng 10 (đơn vị độ dài)
cho phương trình:x2-(m+2)x+m+1=0(1)
a)Giải pt(1) vs m=-3
b)Chứng tỏ pt(1) luôn có nghiệm vs mọi số thực m
c) Tìm m để pt có 2 nghiệm phân biệt x1;x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng vs cạnh huyền là h=\(\dfrac{2}{\sqrt{5}}\)
a: Khi m=-3 thì (1): x^2-(-x)-2=0
=>x^2+x-2=0
=>x=-2 hoặc x=1
b: Δ=(m+2)^2-4(m+1)
=m^2+4m+4-4m-4=m^2>=0
=>Phương trình luôn có 2 nghiệm
Bài 1
Cho Phương trình \(x^2-\left(m+5\right)x+3m+6=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5.
Bài 2
Cho phương trình x2-2(m-3)x+2(m-1)=0, Tìm m để phuowngt rình có 2 nghiệm phân biệt sao cho biểu thức T=x12 + x22 đạt giá trị nhỏ nhất.
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
a: Khi m=3 thì (1): x^2-3x+2*3-4=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
b:
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2
Để phương trình có hai nghiệm phân biệt thì m-4<>0
=>m<>4
Theo đề, ta có: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)=13
=>m^2-4m+8-13=0
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>m=5 hoặc m=-1
Cho pt: \(x^2-(m-2)x+m-3 \)(1)
Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 là độ dài 2 cạnh của một tam giác vuông cân
ta có
△=(m-2)2-4(m-3)=m2-4m+4-4m+12=m2-8m+16=(m-4)2
để phương trình có 2 nghiệm phân biệt thì △>0 suy ra m≠4
nhận xét:
x1,x2 là độ dài của 2 tam giác vuông cân mà x1,x2 phân biệt nên
x1=\(-x2\) vì độ dài thì sẽ bằng |x1| và |x2|
áp dụng hệ thức vi-et ta có:
\(\begin{cases} x1+x2=m-2(1)\\ x1x2=m-3(2) \end{cases}\)→x1+x2-1=x1x2 \(\Leftrightarrow \)(x1-1)(x2-1)=0
\(\Leftrightarrow \)\(\left[\begin{array}{} x1=1\\ x2=1 \end{array} \right.\)\(\Leftrightarrow \)x1x2=-1(vì x1=-x2) \(\Leftrightarrow \)m-3=-1\(\Leftrightarrow \)m=2
vậy m=2 thì....
Cho PT: x2-2mx-2x+2m
1) Giải PT với m=3
2) Tìm m để PT có 1 nghiệm bằng -3.Tìm nghiệm còn lại
3) Cm PT luôn có 2 nghiệm phân biệt vs mọi m
4) Tìm giá trị của m để PT có 2 nghiệm x1, x2 thoả mãn
a) hai nghiệm đều thuộc đoạn [1;3]
b) Hai nghiệm là độ dài hai cạnh góc vuông của 1 tam giác vuông có độ dài cạnh huyền bằng 2 căn 5
cho phương trình : x2 - (m+1) +m - 2 =0 (1)
tìm m để :
a) phương trình (1) có 2 nghiệm x1,x2 là độ dài 2 cạnh góc vuông có cạnh huyền bằng 10
b) phương trình (1) có 2 nghiệm x1, x2 sao cho biểu thức P= | x1 -x2 | đạt giá trị nhỏ nhất
Hình như đề thiếu, pt: \(x^2-\left(m+1\right)x+m-2=0\)
Phương trình đã cho có nghiệm khi \(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2-2m+9>0\)
\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị m
Định lí Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m-2\end{matrix}\right.\)
a, Theo giả thiết ta có: \(x_1^2+x_2^2=100\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=100\)
\(\Leftrightarrow\left(m+1\right)^2-2\left(m-2\right)=100\)
\(\Leftrightarrow m^2+2m+1-2m+4=100\)
\(\Leftrightarrow m^2=95\)
\(\Leftrightarrow m=\sqrt{95}\)
b, \(P=\left|x_1-x_2\right|\)
\(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(m+1\right)^2-4\left(m-2\right)\)
\(=m^2-2m+9=\left(m-1\right)^2+8\ge8\)
\(\Rightarrow P=\left|x_1-x_2\right|\ge2\sqrt{2}\)
\(minP=2\sqrt{2}\Leftrightarrow m=1\)