Cho S=\(\dfrac{1}{\sqrt{1.199}}+\dfrac{1}{\sqrt{2.198}}+\dfrac{1}{\sqrt{3.197}}+...+\dfrac{1}{\sqrt{198.2}}+\dfrac{1}{\sqrt{199.1}}\)
CMR 0.25 < S < 0.3
CMR:
\(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{199.1}}>1,99\)
\(VT=2.\left(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{\sqrt{100.100}}\right)\)
\(=2\left(\frac{1}{\sqrt{1.199}}+...+\frac{1}{\sqrt{n\left(200-n\right)}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{100}\right)\)\(\left(1\le n\le99\right)\)
Ta chứng minh \(\sqrt{n\left(200-n\right)}\le100\text{ }\left(\text{*}\right)\)
\(\left(\text{*}\right)\Leftrightarrow200n-n^2\le100^2\Leftrightarrow n^2-2.100n+100^2\ge0\)
\(\Leftrightarrow\left(100-n\right)^2\ge0\)
Do bất đẳng thức cuối đúng nên (*) là đúng, do đó ta có:
\(A\ge2\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\text{ }\left(\text{100 số }\frac{1}{100}\right)\)
\(=2>1,99\)
A=\(\frac{1}{\sqrt{1.199}}\) +\(\frac{1}{\sqrt{2.198}}\) +\(\frac{1}{\sqrt{3.197}}\)+...+\(\frac{1}{\sqrt{198.2}}\)+\(\frac{1}{\sqrt{199.1}}\)
Chứng minh A>1,99
Ta có với a,b là hai số dương và khác nhau thì \(\sqrt{ab}< \frac{a+b}{2}\Leftrightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)
Áp dụng điều trên , ta có :
\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{198.2}}+\frac{1}{\sqrt{199.1}}\)
\(>2\left(\frac{1}{1+199}+\frac{1}{2+198}+\frac{1}{3+197}+...+\frac{1}{198+2}+\frac{1}{199+1}\right)\)
\(\Rightarrow A>2.\frac{199}{200}=1,99\)
A=\(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{199.1}}\)
Chứng minh rằng: A > 1,99
Áp dụng BĐT sau : \(\frac{1}{\sqrt{a.b}}>\frac{2}{a+b}\) với \(a\ne b\) (bạn tự chứng minh) , ta được :
\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{199.1}}\)
\(>2.\left(\frac{1}{1+199}+\frac{1}{2+198}+\frac{1}{3+197}+...+\frac{1}{199+1}\right)\)
\(=2.\frac{199}{200}=1,99\)
Vậy A > 1,99
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
Chứng minh BĐT đó dễ thôi , suy ra từ BĐT Cauchy: \(a+b\ge2\sqrt{ab}\Rightarrow\frac{1}{\sqrt{ab}}\ge\frac{2}{a+b}\)
cho \(S=1+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{99}}\) . CMR: S > 9
Cho x > 0:
A = \(\dfrac{2+\sqrt{0.25}}{\sqrt{0.25}}\)
B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
Tính:
1) \(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}\)
2) \(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\)
3) \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
4) \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{\sqrt{5}-3}\)
5) \(\dfrac{1}{\sqrt{2}-\sqrt{6}}-\dfrac{1}{\sqrt{6}+\sqrt{2}}\)
LM CHI TIẾT GIÚP MK NHÉ
4: Ta có: \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{3-\sqrt{5}}\)
\(=\dfrac{3-\sqrt{5}-3-\sqrt{5}}{4}\)
\(=\dfrac{-\sqrt{5}}{2}\)
a, Cho S=\(\dfrac{1}{\sqrt{1.1998}}+\dfrac{1}{\sqrt{2.1997}}+...+\dfrac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\dfrac{1}{\sqrt{198-1}}\). Hãy so sánh S và 2\(\dfrac{1998}{1999}\)
b, Cho A=\(\dfrac{1}{\sqrt{1.1999}}+\dfrac{1}{\sqrt{2.1998}}+\dfrac{1}{\sqrt{3.1997}}+...+\dfrac{1}{\sqrt{199-1}}\). Hãy so sánh A với 1,999
Câu a :
Áp dụng BĐT \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\left(a\ne b;a,b>0\right)\) ta có :
\(\dfrac{1}{\sqrt{1.1998}}>\dfrac{2}{1+1998}=\dfrac{2}{1999}\)
\(\dfrac{1}{\sqrt{2.1997}}>\dfrac{2}{2+1997}=\dfrac{2}{19999}\)
.......................................................
\(\dfrac{1}{\sqrt{1998.1}}>\dfrac{2}{1998+1}=\dfrac{2}{1999}\)
Cộng tất cả vế với nhau ta được : \(P>2.\dfrac{1998}{1999}\)
\(\Rightarrowđpcm\)
Câu a, b sao tính chất cái cuối khác những cái còn lại thế. Vậy sao biết tới đâu thì nó dừng.
Tính :
a ) \(S=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+.....+\dfrac{1}{\sqrt{100}+\sqrt{101}}\)
b ) \(S=\dfrac{1}{\sqrt{2}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{6}}+...+\dfrac{1}{\sqrt{100}+\sqrt{102}}\)
a)
\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)
\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)
\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)
\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)
\(S=\sqrt{101}-1\)
b)
\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)
\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)
\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)
\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)
\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)
A= \(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{199.1}}\)
so sánh A với 1
Áp dụng bđt \(\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\) với a > 0; b > 0; a \(\ne\) b ta có:
\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{199.1}}>\frac{2}{1+199}+\frac{2}{2+198}+...+\frac{2}{199+1}\)
\(A>\frac{2}{200}+\frac{2}{200}+...+\frac{2}{200}\) (199 số \(\frac{2}{200}\))
\(A>\frac{2}{200}.199\)
\(A>\frac{1}{100}.199=1,99>1\)
=> A > 1