Áp dụng bđt \(\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\) với a > 0; b > 0; a \(\ne\) b ta có:
\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{199.1}}>\frac{2}{1+199}+\frac{2}{2+198}+...+\frac{2}{199+1}\)
\(A>\frac{2}{200}+\frac{2}{200}+...+\frac{2}{200}\) (199 số \(\frac{2}{200}\))
\(A>\frac{2}{200}.199\)
\(A>\frac{1}{100}.199=1,99>1\)
=> A > 1