\(\text{Cho }\sqrt{55-6\sqrt{6}}=a+b\sqrt{6}\left(a;b\in Z\right)\)
Tính a + b
rút gọn
a) \(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)
b) \(\left(\sqrt{7-3\sqrt{5}}\right)\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
c) \(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
Rút gọn biểu thức
a. \(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}+\sqrt{7}\right)\)
b.\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
c. \(\sqrt{9+4\sqrt{5}}\)
d. \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}\)
e. \(\sqrt{55-6\sqrt{6}}\)
f. \(\sqrt{21-6\sqrt{6}}\)
Ta có :
a)\(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}-\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)
b)\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
c)\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)
rút gọn các biểu thức sau
a) \(\frac{4}{\sqrt{10}}\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)\)
b)\(\left(4+\sqrt{\text{15}}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{\text{4}-\sqrt{15}}\)
c)\(\sqrt{\text{4 }\sqrt{\text{6}}\text{ }+8\sqrt{\text{3 }}+4\sqrt{2}+18}\)
Lời giải:
a)
\(\frac{4}{\sqrt{10}}(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})=\frac{4}{\sqrt{20}}(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}})\)
\(=\frac{4}{2\sqrt{5}}(\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}})=\frac{2}{\sqrt{5}}[\sqrt{(\sqrt{5}+1)^2}+\sqrt{(\sqrt{5}-1)^2}]\)
\(=\frac{2}{\sqrt{5}}(\sqrt{5}+1+\sqrt{5}-1)=\frac{2}{\sqrt{5}}.2\sqrt{5}=4\)
b)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})\)
\(=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
c)
\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+8\sqrt{3}+18}=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(3+1+2\sqrt{3})+2}\)
\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(\sqrt{3}+1)^2+2}\)
\(=\sqrt{(2\sqrt{3}+2)^2+(\sqrt{2})^2+2.(2\sqrt{3}+2).\sqrt{2}}\)
\(=\sqrt{(2\sqrt{3}+2+\sqrt{2})^2}=2\sqrt{3}+2+\sqrt{2}\)
Rút gọn các biểu thức sau:
9, A = \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
10, A = \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
11, A = \(\text{}\text{}\text{}\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
12, A = \(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
13, A = \(\sqrt{9-4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3=6
13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)
\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)
Đưa thừa số ra ngoài dấu căn :
a. \(\sqrt{9\text{6}}.\sqrt{\text{1}2\text{5}}\)
b.\(\sqrt{a^4.\text{6}^{\text{5}}}\)
c.\(\sqrt{a^{\text{6}}.b^{\text{1}\text{1}}}\)
d.\(\:\sqrt{a^{\text{3}}\left(\text{1}-a\right)^4}\)
a) Ta có: \(\sqrt{96}\cdot\sqrt{125}\)
\(=\sqrt{16}\cdot\sqrt{6}\cdot\sqrt{25}\cdot\sqrt{5}\)
\(=20\cdot\sqrt{30}\)
b) Ta có: \(\sqrt{a^4\cdot6^5}\)
\(=a^2\cdot36\cdot\sqrt{6}\)
c) Ta có: \(\sqrt{a^6\cdot b^{11}}\)
\(=\sqrt{a^6}\cdot\sqrt{b^{11}}\)
\(=\left|a^3\right|\cdot\left|b^5\right|\cdot\sqrt{b}\)
\(=a^3b^5\cdot\sqrt{b}\)
d) Ta có: \(\sqrt{a^3\left(1-a\right)^4}\)
\(=\sqrt{a^3}\cdot\sqrt{\left(1-a\right)^4}\)
\(=a\sqrt{a}\cdot\left(1-a\right)^2\)
giải hệ phương trình \(\left\{{}\begin{matrix}\text{a}\sqrt{\text{a}^2+b^2}-6\sqrt{a^2+b^2}=7a+b\\\text{b}\text{ }\sqrt{\text{a}^2+b^2}-\sqrt{a^2+b^2}=7b-a\end{matrix}\right.\)
Nếu \(\sqrt{55-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=a+b\sqrt{6}\)
a,b thuộc Z
=> a+b=?
\(\sqrt{55-6\sqrt{6}}=a+b\sqrt{6}\) tìm a, b
căn(55-6 căn 6)=a+b căn 6 <=> căn(54-2*3 căn 6+1)=a+b căn 6
<=>căn(3 căn 6-1)^2=a+b căn 6 <=> TH1: 3 căn 6 -1=a+b căn 6 => a=-1 , b= 3
TH2: 1- 3 căn 5=a+b căn 6 => a=1 , b= -3
Rút gọn:
a/ \(\left(\sqrt{7}+1\right).\left(2\sqrt{2}-1\right).\left(2\sqrt{14}-1\right).\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
b/ \(\left(3\sqrt{2}+1\right).\left(2\sqrt{3}+1\right).\left(6\sqrt{6}+1\right).\left(215-34\sqrt{3}-33\sqrt{2}\right)\)