C1: Bình phương 2 vế ta có: \(55-6\sqrt{6}=\left(a+b\sqrt{6}\right)^2\)
<=> \(55-6\sqrt{6}=a^2 +6b^2+2ab\sqrt{6}\)
=> a2 + 6b2 = 55 và 2ab = - 6
=> a2 + 6b2 = 55 (1) và ab = -3 => a = -3/b (2)
thế (2) vào (1) ta được : \(\left(-\frac{3}{b}\right)^2+6b^2=55\) => \(9+6b^4=55b^2\)
=> 6b4 - 55b2 + 9 = 0 => 6b4 - 54b2 - b2 + 9 =0 <=> 6b2.(b2 - 9) - (b2 - 9) = 0 <=> (6b2 - 1).(b2 - 9 ) = 0
<=> b2 = 1/6 (Loại; vì b nguyên ) hoặc b2 = 9
+) b2 = 9 => a2 = 1 => a = 1 hoặc - 1 ; b = 3 hoặc - 3
Do \(a+b\sqrt{6}\) > 0 và a; b trái dấu nên a = -1; b = 3 => a+ b = 2
Vậy a + b = 2
C2: \(\sqrt{55-6\sqrt{6}}=\sqrt{\left(3\sqrt{6}\right)^2-2.3\sqrt{6}.1+1}=\sqrt{\left(3\sqrt{6}-1\right)^2}\)
= \(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)
=> a = -1; b = 3 => a + b = 2