So sánh \(\sqrt{24}+\sqrt{26}\) và 10
So sánh
\(5+\sqrt{27}\)và \(\sqrt{24}+\sqrt{26}\)
\(\text{Ta có : }\hept{\begin{cases}5>\sqrt{24}\left(\sqrt{25}>\sqrt{24}\right)\\\sqrt{27}>\sqrt{26}\left(\text{luôn đúng}\right)\end{cases}}\)
\(\Rightarrow5+\sqrt{27}>\sqrt{24}+\sqrt{26}\)
\(\text{Vậy }\)\(5+\sqrt{27}>\sqrt{24}+\sqrt{26}\)
Vì 5=căn 25>căn 24
căn 27>căn 26
=>5+ căn 27>căn 24+ căn 26
so sánh
\(a.3\sqrt{26}\) và 15
\(b.-5\sqrt{35}\) và 30
c.\(\sqrt{34-10\sqrt{3}}\) và 5-\(\sqrt{3}\)
d.\(\sqrt{16+225}\) và \(\sqrt{16}+\sqrt{225}\)
So sánh:
a,\(\sqrt{26}+\sqrt{5}\) và 7
b, \(\sqrt{8}+\sqrt{24}\)và \(\sqrt{65}\)
a)
Ta có:
\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)
\(=31+2\sqrt{130}\)(1)
Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)
Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)
a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)
b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)
\(\sqrt{65}>\sqrt{64}=8\)
\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)
Bài 5: So sánh
1,A=\(\sqrt{13}\) + \(\sqrt{20}\)
B=\(\sqrt{24}\) + \(\sqrt{19}\)
2,A=\(\sqrt{26}\) + \(\sqrt{10}\)
B=\(\sqrt{64}\)
Bài 2:
\(A=\sqrt{26}+\sqrt{10}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(B=\sqrt{64}=8\)
Do đó: A>B
1.Ta có:
\(A=\)\(\sqrt{13}+\sqrt{20}=\sqrt{13}+2\sqrt{5}\)
\(B=\)\(\sqrt{24}+\sqrt{19}=\sqrt{19}+2\sqrt{6}\)
So sánh ta thấy:
\(\sqrt{13}<\sqrt{19}\) ; \(2\sqrt{5}<2\sqrt{6}\)
Vậy A < B
ko dùng máy tính hãy so sánh \(\sqrt{3}+\sqrt{8}+\sqrt{24}\)và 10
theo ket qua cho thay:9.4594<10
Ta có :
\(\sqrt{3}< \sqrt{4}=2\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\sqrt{24}< \sqrt{25}=5\)
\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)
Vậy ...
\(\sqrt{3}+\sqrt{8}+\sqrt{24}< \sqrt{4}+\sqrt{9}+\sqrt{25}\)
\(=2+3+5=10\)
Vậy: \(\sqrt{3}+\sqrt{8}+\sqrt{24}< 10\)
So sánh: a) \(\sqrt{26}-\sqrt{8}\) và 2
b) \(\sqrt{29}-\sqrt{41}\)và \(5-\sqrt{10}\)
a) 2 = √4 => √26 - √8 > 2
b) Dễ thấy √29 chắc chắn nhỏ hơn √41 => √29-√41 chắc chắn âm, còn 5=√25 => kết quả sẽ ra dương(√25>√10)
Suy ra √29 - √41 < 5- √10
Đây chỉ là cách tính nhanh của mình ,bn có thể dùng máy tính để tính lại.
\(\sqrt{26}-\sqrt{8}< \sqrt{25}-\sqrt{9}=5-3=2\)
b) \(\sqrt{29}< \sqrt{41}\Rightarrow\sqrt{29}-\sqrt{41}< 0\)
và \(5-\sqrt{10}=\sqrt{25}-\sqrt{10}>0\)
Vậy \(\sqrt{29}-\sqrt{41}< 5-\sqrt{10}\)
So sánh \(\sqrt{144}\) và \(\sqrt{37}\)+\(\sqrt{26}\)+1
Dễ mà:vvv
Ta có: \(\left\{{}\begin{matrix}\sqrt{37}>\sqrt{36}=6\\\sqrt{26}>\sqrt{25}=5\end{matrix}\right.\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{36}+\sqrt{25}+1=6+5+1=12\)
Mà \(\sqrt{144}=12\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{144}\)
Ta có: \(\sqrt{37}>\sqrt{36}=6\)
\(\sqrt{26}>\sqrt{25}=5\)
Do đó: \(\sqrt{37}+\sqrt{26}>6+5=11\)
\(\Leftrightarrow\sqrt{37}+\sqrt{26}+1>12\)
hay \(\sqrt{144}< \sqrt{37}+\sqrt{26}+1\)
Ta có \(\sqrt{144}\)=12=6+5+1=\(\sqrt{36}+\sqrt{25}+\sqrt{1}\)
Vì 0<25<26=>\(\sqrt{25}< \sqrt{26}\)(1)
Vì 0<36<37=>\(\sqrt{36}< \sqrt{37}\)(2)
Từ (1) và (2), ta có \(\sqrt{36}+\sqrt{25}< \sqrt{37}+\sqrt{26}\)
=>\(\sqrt{36}+\sqrt{25}+\sqrt{1}< \sqrt{37}+\sqrt{26}+\sqrt{1}\)
Hay 12<\(\sqrt{37}+\sqrt{26}+1\)
Hay\(\sqrt{144}\)<\(\sqrt{37}+\sqrt{26}+1\)
\(\sqrt{ }\)26 và 1+\(\sqrt{ }\)17\(\) hãy so sánh
A) SO SÁNH \(3\sqrt{3}+2\sqrt{7}\) VÀ \(\sqrt{100}\)
B) SO SÁNH \(\sqrt{24}+\sqrt{26}\)VÀ \(\sqrt{100}\)
>
<
Tik nha bn có cần cách làm ko? Nhân tiện chúc bn năm ms zui zẻ