Dễ mà:vvv
Ta có: \(\left\{{}\begin{matrix}\sqrt{37}>\sqrt{36}=6\\\sqrt{26}>\sqrt{25}=5\end{matrix}\right.\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{36}+\sqrt{25}+1=6+5+1=12\)
Mà \(\sqrt{144}=12\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{144}\)
Ta có: \(\sqrt{37}>\sqrt{36}=6\)
\(\sqrt{26}>\sqrt{25}=5\)
Do đó: \(\sqrt{37}+\sqrt{26}>6+5=11\)
\(\Leftrightarrow\sqrt{37}+\sqrt{26}+1>12\)
hay \(\sqrt{144}< \sqrt{37}+\sqrt{26}+1\)
Ta có \(\sqrt{144}\)=12=6+5+1=\(\sqrt{36}+\sqrt{25}+\sqrt{1}\)
Vì 0<25<26=>\(\sqrt{25}< \sqrt{26}\)(1)
Vì 0<36<37=>\(\sqrt{36}< \sqrt{37}\)(2)
Từ (1) và (2), ta có \(\sqrt{36}+\sqrt{25}< \sqrt{37}+\sqrt{26}\)
=>\(\sqrt{36}+\sqrt{25}+\sqrt{1}< \sqrt{37}+\sqrt{26}+\sqrt{1}\)
Hay 12<\(\sqrt{37}+\sqrt{26}+1\)
Hay\(\sqrt{144}\)<\(\sqrt{37}+\sqrt{26}+1\)