Rút gọn \(C=\dfrac{1}{3}+\dfrac{1}{3^3}+\dfrac{1}{3^5}+...+\dfrac{1}{3^{99}}+\dfrac{1}{8.3^{99}}\)
Rút gọn \(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{8.3^{99}}\)
Đặt D=\(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
=>3D=\(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
=>3D-D=(\(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\))-(\(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\))
=>2D=\(1-\dfrac{1}{3^{99}}\)
=>D=\(\dfrac{1}{2}-\dfrac{1}{2.3^{99}}\)
C=D+\(\dfrac{1}{8.3^{99}}=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}+\dfrac{1}{8.3^{99}}=\dfrac{1}{2}-\dfrac{3}{8.3^{99}}=\dfrac{1}{2}-\dfrac{1}{8.3^{98}}=\dfrac{4.3^{98}-1}{8.3^{98}}\)
Rút gọn các biểu thức sau:
a) A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +...+ \(\dfrac{1}{3^n}\)
b) B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\) +...+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
c) C = \(\dfrac{3}{2^2}\) x \(\dfrac{8}{3^2}\) x \(\dfrac{15}{4^2}\) ... \(\dfrac{899}{30^2}\)
(Mình cần gấp ạ)
b, B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2 \(\times\) B = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2 \(\times\) B + B = 1 - \(\dfrac{1}{2^{100}}\)
3B = ( 1 - \(\dfrac{1}{2^{100}}\))
B = ( 1 - \(\dfrac{1}{2^{100}}\)) : 3
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
A\(\times\) 3 = 3 + 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+ \(\dfrac{1}{3^{n-1}}\)
A \(\times\) 3 - A = 3 - \(\dfrac{1}{3^n}\)
2A = 3 - \(\dfrac{1}{3^n}\)
A = ( 3 - \(\dfrac{1}{3^n}\)) : 2
C = \(\dfrac{3}{2^2}\) \(\times\) \(\dfrac{8}{3^2}\) \(\times\) \(\dfrac{15}{4^2}\) \(\times\) ...........\(\times\) \(\dfrac{899}{30^2}\)
C = \(\dfrac{1\times3}{2^2}\) \(\times\) \(\dfrac{2\times4}{3^2}\) \(\times\) \(\dfrac{3\times5}{4^2}\) \(\times\)........\(\times\) \(\dfrac{29\times31}{30^2}\)
C = \(\dfrac{1\times2\times\left(3\times4\times5\times....\times29\right)^2\times30\times31}{2^2\times\left(3\times4\times5\times.......\times29\right)^2\times30^2}\)
C = \(\dfrac{2\times\left(3\times4\times5\times.....\times29\right)^2\times30}{2\times\left(3\times4\times5\times.....\times29\right)^2\times30}\) \(\times\) \(\dfrac{1\times31}{2\times30}\)
C = 1 \(\times\) \(\dfrac{31}{60}\)
C = \(\dfrac{31}{60}\)
a rút gọn biểu thức: T=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
b tìm số tự nhiên n thỏa mãn
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{4}{5}\)
Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)
a) Áp dụng (*) vào T
\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)
\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)
Vậy n=24.
rút gọn biểu thức A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
B=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)
cả 2 ý bạn trục căn thức ở mấu là xong nhé:
vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy
a) rút gọn: \(\dfrac{4^5x9^4-2x6^9}{2^{10}x3^8+6^8x20}\)
b) Cho A=\(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\).So sánh A với 2
a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 1:
c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
c,xy-2x+5y-12=0
xy-2x+5y-12+2=0+2
xy-2x+5y-10=2
xy-2x+5y-5.2=-2
x.(y-2)+5.(y-2)=2
(y-2).(x+5)=2
Sau đó bạn tự lập bảng
A=\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1\times99}+\dfrac{1}{3\times97}+\dfrac{1}{5\times95}+...+\dfrac{1}{97\times3}+\dfrac{1}{99\times1}}\)
Ta có: \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+\dfrac{1}{5\cdot95}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{100}{1\cdot99}+\dfrac{100}{3\cdot97}+\dfrac{100}{5\cdot95}+...+\dfrac{100}{97\cdot3}+\dfrac{100}{99\cdot1}}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{1+\dfrac{1}{99}+\dfrac{1}{3}+\dfrac{1}{97}+\dfrac{1}{5}+\dfrac{1}{95}+...+\dfrac{1}{97}+\dfrac{1}{3}+\dfrac{1}{99}+1}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}\right)}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1}{2}\)
hay A=50
CMR:a)\(\dfrac{1}{3}< \dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{30}< \dfrac{5}{2}\)
b)\(\dfrac{1}{5}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+.....-\dfrac{1}{99}< \dfrac{2}{5}\)
c)\(\dfrac{1}{15}< \dfrac{1}{2}.\dfrac{3}{4}......\dfrac{99}{100}< \dfrac{1}{10}\)
T làm biếng lắm; làm C thôi
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)
Làm tương tự ta được A > 1/15
câu a
\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)
\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)