Tìm các cặp số nguyên tố x, y thỏa mãn: x2 - 2y2 =1
tìm các nguyên tố x,y thỏa mãn x2-2y2=1
tìm các số nguyen tố x,y thỏa mãn đề bài x2-2y2-1=0
\(\Leftrightarrow x^2-1=2y^2\)
Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ
\(\Rightarrow x=2k+1\)
Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)
Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
\(\Rightarrow y=2\)
\(\Rightarrow x^2-9=0\Rightarrow x=3\)
Vậy \(\left(x;y\right)=\left(3;2\right)\)
Tìm tất cả các bội số nguyên (x;y) thỏa mãn phương trình:
a) x2 - 2x + 2y2 = 2(xy +1)
b) x2 + 2y2 + 2xy - 2x = 7
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
Tìm các cặp số nguyên x,y, thỏa : x2 -2y2 xy 2x 4y -5=0
1.Tìm số nguyên x,biết:
a) 2/x-1/+/1-x/=9
2.tìm các cặp số x,y thỏa mãn:
(2x+1)(5-y)=6
3.tìm số nguyên "n" ,biết:
n2+3n-5 chia hết cho n+3
4.tìm tát cả các số nguyên x thỏa mãn:
(x2-1)(x2-6)<0
GIÚP MIK VỚI,ĐÚNG CHO 5 LIKE!!
tìm tất cả các cặp số nguyên (x, y) thỏa mãn: x(x2 - y) + (y - 3)(x2 + 1) = 0
tìm các cặp số nguyên x, y thỏa mãn: y2(x2-x+1)+xy = 3x-1
tìm tất cả các cặp số nguyên x, y thỏa mãn x2+x = 32019y+1
- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)
\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)
- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1
Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2
\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên
Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)
@ Ha Dung vì khi y < 0 thì y = -k (k N)
⇒ 32019y = 3-2019k = ( N)
()2019k không phải là số nguyên vậy 32019y không phải là số nguyên em nhé.
Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
\(\Leftrightarrow x^2-1=6y^2\)
Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)
\(\Rightarrow4\left(k^2+k\right)=6y^2\)
\(\Rightarrow2\left(k^2+k\right)=3y^2\)
Do 2 chẵn \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
Mà y là SNT \(\Rightarrow y=2\)
Thay vào pt đầu:
\(x^2+1=6.2^2+2\Rightarrow x=5\)
Vậy (x;y)=(5;2)
Ta có: \(x^2-1=2y^2\)
Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ
⇒ x= 2k+1
Ta có: \(\left(2k+1\right)^2-1=2y^2\)
⇒ \(4\left(k^2+k\right)=2y^2\)
⇒\(2\left(k^2+k\right)=y^2\)
Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn
Mà y là số nguyên tố ⇒ y = 2
Ta lại có: \(x^2-1=2.2^2\)
⇒ \(x^2-1=8\)
⇒\(x^2=8+1=9\)
⇒ x= -3 hoặc 3
Vì x là số nguyên tố nên x =3
Vậy x=3, y=2
bài 1: cho các số dương x, y, z thỏa mãn x+y+z=1. Tìm min
a) A = x2+y2+z2
b) B = x2+y2+3z2
c) C=x2+2y2+3z2
d) D=x2+by2+cz2