\(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
Mn giải hộ em ak
\(A=\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right):\left(-4\dfrac{1}{6}+3\dfrac{1}{7}\right)+7\dfrac{1}{2}\)
\(B=4\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}:\dfrac{125}{64}\right):\left(-\dfrac{27}{8}\right)\)
giải hộ mk nhanh nhanh nhoa ☺
(1) giải hpt:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}^{ }\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)
giúp mk vs ak
a, ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\)
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\left(tm\right)\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}-\dfrac{2y}{2}=\dfrac{2}{2}\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1-2y=2\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Tìm n biết:
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
b) \(\dfrac{8}{2^n}\)\(=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}\)\(=\dfrac{1}{8}\)
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=8=\left(-2\right)^3\)
=> n = 3
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=4=2^2\)
=> n = 2
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
=> 2n - 1 = 3
=> 2n = 4
=> n = 2
Giải:
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=32:4=8\)
\(\Rightarrow\left(-2\right)^n=8\)
Vì \(\left(-2\right)^n=2^3\) là ko thể nên n ∈ ∅
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2=4\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\)
\(\Rightarrow n=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
\(\Rightarrow2n-1=3\rightarrow n=2\)
\(\lim\limits\left(\sqrt{an^2+3n+1}-2n\right)\) là số thực. Gía trị của a thuộc khoảng nào sau đây? giải bằng tự luận giúp em ạ, em cảm ơn nhiều
A. \(\left(\dfrac{3}{2};2\right)\)
B. \(\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
C. \(\left(-1;1\right)\)
D. \(\left(2;+\infty\right)\)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).......\left(1+\dfrac{1}{n^2+2n}\right)\)
Thừa số tổng quát:
\(1+\dfrac{1}{n^2+2n}=\dfrac{n^2+2n+1}{n^2+2n}=\dfrac{\left(n+1\right)^2}{\left(n+1\right)^2-1}\)
Đặt: \(\left(n+1\right)^2=t\ge0\) biểu thức được phát biểu dưới dạng: \(\dfrac{t}{t-1}\) Thay vào bài toán tìm được giá trị.
a) \(\dfrac{1}{2\left(\sqrt{x}-1\right)}.\left(\dfrac{x^2-8\sqrt{x}}{x+2\sqrt{x}+4}+1\right)-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
rút gọn hộ mình vs mn
đkxđ:....
Rút gọn:
\(\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left(\dfrac{x^2-8\sqrt{x}}{x+2\sqrt{x}+4}+1\right)-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\dfrac{\sqrt{x}\left(\sqrt{x}^3-8\right)}{x+2\sqrt{x}+4}+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\sqrt{x}\left(\sqrt{x}-2\right)+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{2\left(\sqrt{x}-1\right)}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{2}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x+\sqrt{x}+1}{2\sqrt{x}}\)
\(=\dfrac{x-\sqrt{x}-x+\sqrt{x}+1}{2\sqrt{x}}=\dfrac{1}{2\sqrt{x}}\)
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)
Tính \(S=\sqrt{1+\dfrac{8.1^2-1}{1^2.3^2}}+\sqrt{1+\dfrac{8.2^2-1}{3^2.5^2}}+...+\sqrt{1+\dfrac{8.n^2-1}{\left(2n-1\right)^2.\left(2n+1\right)^2}}\)
Với\(n\in N\)
\(\dfrac{0,8:\left(\dfrac{4}{5}.1,25\right)}{0,64-\dfrac{1}{25}}+\dfrac{\left(1,08-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(6\dfrac{5}{9}-3\dfrac{1}{4}\right).2\dfrac{2}{17}}+\left(1,2.0,5\right):\dfrac{4}{5}\)
(mn giải giúp mik với ạ! iu mn nhiều
\(\dfrac{\dfrac{4}{5}:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}+\left(\dfrac{6}{5}\cdot\dfrac{1}{2}\right):\dfrac{4}{5}\)
\(=\dfrac{4}{5}:\dfrac{3}{5}+\dfrac{7}{4}:7+\dfrac{3}{5}:\dfrac{4}{5}\)
\(=\dfrac{4}{3}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\dfrac{7}{3}\)