{x ∈ N / x < 10} … A;
{x ∈ N/ 4 < x ≤ 9} … A;A … {x ∈ N/ 6 < x < 9}
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
M(x)=2-x²+x+3x³+x⁵
N(x)=-x - x²+2x⁴-1
M(x)+N(x) ; M(x)-N(x)
bằng cách liệt kê:
a/ A={x|x€N,21<x≤25}
b/ B={x|x€N*;x≤3}
c/C={x|x€N;x chẵn và 12<x25}
d/ D={x|x€N* x lẻ và x≤4}
a) \(A=\left\{22;23;24;25\right\}\)
b) \(B=\left\{0;1;2;3\right\}\)
c) \(C=\left\{14;16;18;20;22;24\right\}\)
d) \(D=\left\{1;3\right\}\)
M={ x E N / m - x = 5}
N={ x E N / x . 0= 0}
O={ x E n / 0.x= 0}
P={ x E n / x chia het cho 4 va x < 100 }
Q={ x En / x = 2n; x <100; n E N*}
R={ x En/ x + 9 = 7
Luu y E la` Thuoc nha!!
M(x)=x⁴+5x³-x²+x-0,5 N(x)=3x⁴-5x²-x-2,5 Hãy tính M(x)+N(x) và M(x)-N(x)
\(M\left(x\right)+N\left(x\right)=4x^4+5x^3-6x^2-3\)
\(M\left(x\right)-N\left(x\right)=-2x^4+5x^3+4x^2+2x+2\)
1,Giải PT sau
\n\na,(x-1)2+(x+3)2=2(x-2)(x+1)+38
\n\nb,5(x2-2x-1)+2(3x-2)=5(x+1)2
\n\nc,(x-3)3-2(x-1)=x(x-2)2-5x2
\n\nd,x(x+3)2-3x=(x+2)3+1
\n\ne,\\(\\frac{\\left(x-1\\right)\\left(x+5\\right)}{3}-\\frac{\\left(x+2\\right)\\left(x+5\\right)}{12}=\\frac{\\left(x-1\\right)\\left(x+2\\right)}{4}\\)
\n\n\n
Giải phương trình
a/ 2x-1 trên 4 + x-3 trên 3 = 4x-2 trên 3 - 6x+7 trên 12 .
b/ (x+3)(4-x)= x² +6x + 9
c/ 96 trên x ² -4 + 7+x trên 4-x = 2x-1trên x+4 -3
d/ 1 + x-2 trên 1-x + 2x² - 5 trên x³ - 1 = 4 trên x² + x + 1
d/ 1+x-2 trên 1-x + 2x ² -5 trên x mũ 3 - 1
a: \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
=>6x-3+4x-12=16x-8-6x-7
=>10x-15=10x-15(luôn đúng)
b: =>(x+3)(4-x)-(x+3)2=0
=>(x+3)(4-x-x-3)=0
=>(x+3)(-2x+1)=0
=>x=-3 hoặc x=1/2
d: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
\(\Leftrightarrow x^3-1-\left(x-2\right)\left(x^2+x+1\right)+2x^2-5=4x-4\)
\(\Leftrightarrow x^3-1-\left(x-1-1\right)\left(x^2+x+1\right)+2x^2-4x-1=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-\left[x^3-1-\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-x^3+1+x^2+x+1=0\)
\(\Leftrightarrow3x^2-3x=0\)
=>3x(x-1)=0
=>x=1(loại) hoặc x=0(nhận)
giúp mình với ạ : mình đang cần gấp
1. rút gọn
A) x(x+1)nhân(x-1)-(x2 -1)(x+1)
b)(x+1)nhân(x-2)-(2x-1)nhân(x+2)+2x nhân(x-1)
c) (x2+2x-1)nhân (x+2)-(x-1)nhân (2x+1)
2. tìm x
a)(x-1)nhân (x-3)-(x+3)nhân(x-1)=0
b ) (2x+1 )nhaan(x-1)-(x+1)nhân (2x-3)=7x-1
c) (x=2)nhân(x-3)-(x-3)nhân(x+5 )=-x+3
d) 2(x+1)nhân (x-3)-(2x+1) nhân(x-2 )=-2x-3
cảm ơn nhiều ạ
Bài 1 :
a) \(x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\)
\(=\left(x^3-x\right)-\left(x^3+x^2-x-1\right)\)
\(=x^3-x-x^3-x^2+x+1\)
\(=1-x^2\)
b) \(\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\)
\(=\left(x^2-x+2\right)-\left(2x^2+3x-2\right)+\left(2x^2-2x\right)\)
\(=x^2-x+2-2x^3-3x+2+2x^3+2x\)
\(=x^2-2x+4\)
\(=\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\)
c) \(\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\)
\(=\left(x^3+4x^2+3x-2\right)-\left(2x^2-x-1\right)\)
\(=x^3+4x^2+3x-2-2x^3+x+1\)
\(=-x^3+4x^2+4x-1\)
Bài 1
\(a)x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\\ =\left(x+1\right)\left[x\left(x-1\right)-\left(x^2-1\right)\right]\\ =\left(1+x\right)\left(x^2-x-x^2+1\right)\\ =\left(1+x\right)\left(1-x\right)\\ =1-x^2\)
\(b)\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\\ =x^2-2x+x-2-\left(2x^2+4x-x-2\right)+2x^2-2x\\ =x^2-2x+x-2-(2x^2+3x-2)+2x^2-2x\\ =x^2-2x+x-2-2x^2-3x+2+2x^2-2x\\ =x^2-6x\)
\(c)\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2+x-2x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2-x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-2x^2+x+1\\ =x^3+2x^2+4x-1\)
Tập hợp nào biểu diễn các số tự nhiên nhỏ hơn 1515?A = \{ x \inA={x∈\mathbb N ^ *N ∗ | x < 15\}x<15}.A = \{ x \inA={x∈ \mathbb N ^ *N ∗ | x > 15\}x>15}.A = \{ x \in \mathbb NA={x∈N | x > 15\}x>15}.A = \{ x \inA={x∈ \mathbb NN | x < 15\}x<15}.