a2 + 9b2+ c2 +\(\dfrac{19}{2}\) > 2a + 12b +4c
chứng minh rằng với mọi số a,b,c ta luôn có a^2+9b^2+c^2+19/2>2a+12b+4c
a2-2a+1+4b2-12b+9+3c2-6c+3+1>0
(luôn đúng)
BĐT ban đầu đúng
Câu 19: Phân tích (a2+ 4)2 – 16a2 thành nhân tử ta được
A. (a –2)2(a + 2)2
B. (a + 2)4
C. (a2+ 4a + 4)(a2 – 2a + 1)
D. (a2+ 4)2
\(\left(a^2+4\right)^2-16a^2\\ =\left(a^2+4\right)^2-\left(4a\right)^2\\ =\left(a^2-4a+4\right)\left(a^2+4a+4\right)\\ =\left(a-2\right)^2\left(a+2\right)^2\)
Chọn A.
Cho a,b,c thuộc R . CM Bất đẳng thức sau và cho biết dấu = xảy ra khi nào?
g) a2+b2+c2-4a-6b-2c+14 ≥0
h) a 2+4b2+3c2 +14> 2a+12b+6c
Mn làm giúp dùm e bài này với ạ.
a: \(\Leftrightarrow a^2-4a+4+b^2-6b+9+c^2-2c+1>=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-3\right)^2+\left(c-1\right)^2>=0\)
Dấu '=' xảy ra (a,b,c)=(2;3;1)
Các số thực a,b,c,x,y,z thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 c + 4 = 0 và x 2 + y 2 + z 2 - 4 x + 4 y + 4 = 0 . Tìm GTLN của S = a - x 2 + b - y 2 + z - c 2 .
phân tích đa thức thành nhân tử
a)x4 - x3y + x - y
b)a2 - 2a + 1 - 9b2
a: =x^3(x-y)+(x-y)
=(x-y)(x^3+1)
=(x-y)(x+1)(x^2-x+1)
b: =(a-1)^2-9b^2
=(a-1-3b)(a-1+3b)
Phân tích đa thức thành nhân tử:
a) 5ab-45a3b
b) 3a-6ab+5-10b
c) a2-7ab-2a+14b
d) 4a2-8b+4a-8ab
e) a2-5a+15b-9b2
a,\(5ab-45a^3b\)
=\(5ab\left(1-9a^2\right)\)
=\(5ab\left(1-3a\right)\left(1+3a\right)\)
b,\(3a-6ab+5-10b\)
=\(\left(3a-6ab\right)+\left(5-10b\right)\)
=\(3a\left(1-2b\right)+5\left(1-2b\right)\)
=\(\left(1-2b\right)\left(3a+5\right)\)
c,\(a^2-7ab-2a+14b\)
=\(\left(a^2-7ab\right)-\left(2a-14b\right)\)
=\(a\left(a-7b\right)-2\left(a-7b\right)\)
=\(\left(a-7b\right)\left(a-2\right)\)
d,\(4a^2-8b+4a-8ab\)
=\(\left(4a^2-8ab\right)+\left(4a-8b\right)\)
=\(4a\left(a-2b\right)+4\left(a-2b\right)\)
=\(\left(a-2b\right)\left(4a+4\right)\)
=\(4\left(a-2b\right)\left(a+1\right)\)
e,\(a^2-5a+15b-9b^2\)
=\(\left(a^2-9b^2\right)-\left(5a-15b\right)\)
=\(\left(a-3b\right)\left(a+3b\right)-5\left(a-3b\right)\)
=\(\left(a-3b\right)\left(a+3b-5\right)\)
Bài 1: Rút gọn
A=(7-2x)(7+2x)+(2x+7)2
B=(4x-5)2-(2x-1)(8x-5)
C=(5x-3)2-2(5x-3)(5-5x)+(5x-5)2
D=(2a+3b-c)(2a-3b+c)-(4a2-9b2-c2)
A=(7-2x)(7+2x)+(2x+7)2
=49-4x2+4x2+28x+49
= 98+28x
B=(4x-5)2-(2x-1)(8x-5)
= 16x2-25-((8x(2x-1))-(5(2x-1)))
= 16x2-25-((16x2+8x)-(10x+5))
= 16x2-25-(16x2+8x-10x-5)
= 16x2-25-16x2-8x+10x+5
= -20+2x
Bài 1: Rút gọn
A=(7-2x)(7+2x)+(2x+7)2
B=(4x-5)2-(2x-1)(8x-5)
C=(5x-3)2-2(5x-3)(5-5x)+(5x-5)2
D=(2a+3b-c)(2a-3b+c)-(4a2-9b2-c2)
a) Ta có: \(A=\left(7-2x\right)\left(7+2x\right)+\left(2x+7\right)^2\)
\(=7-4x^2+4x^2+28x+49\)
\(=28x+56\)
b) Ta có: \(B=\left(4x-5\right)^2-\left(2x-1\right)\left(8x-5\right)\)
\(=16x^2-40x+25-\left(16x^2-10x-8x+5\right)\)
\(=16x^2-40x+25-16x^2+18x-5\)
\(=-22x+20\)
c) Ta có: \(C=\left(5x-3\right)^2-2\left(5x-3\right)\left(5-5x\right)+\left(5x-5\right)^2\)
\(=\left(5x-3\right)^2+2\cdot\left(5x-3\right)\left(5x-5\right)+\left(5x-5\right)^2\)
\(=\left(5x-3+5x-5\right)^2\)
\(=\left(10x-8\right)^2\)
\(=100x^2-160x+64\)
d) Ta có: \(D=\left(2a+3b-c\right)\left(2a-3b+c\right)-\left(4a^2-9b^2-c^2\right)\)
\(=\left[\left(2a+\left(3b-c\right)\right)\left(2a-\left(3b-c\right)\right)\right]-\left(4a^2-9b^2-c^2\right)\)
\(=4a^2-\left(3b-c\right)^2-4a^2+9b^2+c^2\)
\(=-9b^2+6bc-c^2+9b^2+c^2\)
=6bc
Cm a2+9b2+c2+9,5>=2a +12b +4c
dấu ''='' k xảy ra nên chỉ cm đc > hơn thôi nhé
\(a^2+9b^2+c^2+9,5>2a+12b+4c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(9b^2-12b+4\right)+\left(c^2-4c+4\right)>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(3b-2\right)^2+\left(c-2\right)^2+0,5>0\) --> luôn đúng
-->đpcm