Vẽ AH vuông góc với BC tại H. Gọi I là giao điểm của AC và BD. Chọn điểm Q sao cho A là trung điểm của IQ. Chứng minh QD \(\perp\) BD.
Cho tam giác ABC có ba góc đều nhọn, AB < AC. Vẽ AH vuông góc với BC (H thuộc BC).
Trên AH lấy điểm K sao cho H là trung điểm của AK.
a) Gọi E là trung điểm của BC. Trên tia AE lấy điểm D sao cho E là trung điểm của AD. Chứng minh rằng
BD = AC = CK
b) Chứng minh EH là phân giác của góc AEK và DK // BC
c) Gọi I là giao điểm của BD và CK, N là trung điểm của KD. Chứng minh ba điểm E, I, N thẳng hàng.
Cho ΔABC cân tại A. Vẽ AH vuông góc BC tại H
a) Chứng minh Δ AHB = ΔAHC
b) Gọi I là trung điểm của HC. Qua I vẽ đường thẳng vuông góc với HC, đường thẳng này cắt AC tại D. Chứng minh ΔDHC cân tại D
c) Gọi G là giao điểm của AH và BD, M là trung điểm AB. Chứng minh GM=\(\dfrac{1}{2}\) GB
a) Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:
AB = AC (\(\Delta ABC\) cân tại A).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AHB=\Delta AHC\) (cạnh huyền - góc nhọn).
b) Xét \(\Delta DHC:\)
DI là trung tuyến (I là trung điểm của HC).
DI là đường cao \(\left(DI\perp HC\right).\)
\(\Rightarrow\Delta DHC\) cân tại D.
Cho tam giác ABC vuông tại A có AB=15cm, AC=20cm. Vẽ \(AH\perp BC\) tại H.
a) Tính BC, AH
b) Vẽ BD là phân giác của \(\widehat{ABC}\left(D\in AC\right)\) Tính DC
c) Gọi I là giao điểm của AH và BD. Chứng minh AI.AD = IH.DC
d) Trên cạnh HC lấy E sao cho HE=HA, qua E vẽ đường thẳng \(\perp BC\) cắt AC ở M, qua C vẽ đường thẳng \(\perp BC\) cắt tia phân giác của \(\widehat{MEC}\) tại F. Chứng minh H,M,F thẳng hàng
Cho tam giác ABC nội tiếp nửa đường tròn đường kính BC (AB < AC) . Gọi K là trung điểm của AC
a) Chúng minh : OK vuông góc AC
b) Tiếp tuyến tại C của (O) cắt tia OK tại D . Gọi T là giao điểm của BD và (O) . Chứng minh : DK.DO = DT.DB
c) Vẽ AH vuông góc với BC tại H . Gọi I là giao điểm của AH và BD . Tia CI cắt đường thẳng AD tại E . Chứng minh : EB là tiếp tuyến của (O)
Cho tam giác ABC có 3 góc đều nhọn, AB < AC. Vẽ AH vuông góc với BC (H thuộc BC). Trên tia AH lấy điểm K sao cho H là trung điểm của AK.
a) Chứng minh rằng ΔACH=ΔKCH
b) Gọi E là trung điểm BC. Trên tia AE lấy điểm D sao cho E là trung điểm của AD. Chứng minh rằng BD =CK.
c) Chứng minh EH là phân giác của góc AEK và DK∥BC
d) Gọi I là giao điểm của BD là CK, N là trung điểm của KD. Chứng minh ba điểm E, I, N thẳng hàng.
a, xét tam giác ACH và tam giác KCH có : CH chung
góc AHC = góc KHC = 90
AH = HK do H là trđ của AK (gt)
=> tam giác ACH = tam giác KCH (2cgv)
b, xét tam giác AEC và tam giác DEB có : góc BED = góc CEA (đối đỉnh)
BE= EC do E là trđ của BC (GT)
AE = ED do E là trđ của AD (gt)
=> tam giác AEC = tam giác DEB (c-g-c)
=> BD = AC (đn)
tam giác ACH = tam giác KCH (câu a) => AC = CK (đn)
=> BD = CK (tcbc)
c, xét tam giác AEH và tam giác KEH có: EH chung
AH = HK (câu a)
góc AHE = góc KHE = 90
=> tam giác AEH = tam giác KEH (2cgv)
=> góc AEH = góc KEH mà EH nằm giữa EA và EK
=> EH là phân giác của góc AEK (đn)
Cho tam giác ABC có AB=AC. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh rằng:
a) BD = CE
b) EI = DI
c) Ba điểm A, I, H thẳng hàng ( với H là trung điểm của BC)
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
Cho ∆ABC cân tại A , kẻ BD vuông góc với AC và CE vuông góc với AB a) Chứng minh ∆BDC = ∆CEB b)Gọi H là giao điểm của BD và CE . Chứng minh AH là đường trung trực của BC
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc HBC=góc HCB
=>HB=HC
mà AB=AC
nên AH là trung trực của BC
Cho tam giác ABC có AB=AC .Vẽ BD vuông góc với AC tai D , CE vuông góc với AB tại E . Gọi I là giao điểm của BD và CE
1.Chứng minh :
a,BD = CE
b,EI=DI
2,Gọi H là trung điểm của BC. Chứng minh ba điểm A,I,H thẳng hàng
Cho ABC vuông tại A có AB < AC. Vẽ AH vuông góc với BC tại H. Vẽ HI vuông góc với AB tại I. Trên tia HI lấy điểm D sao cho I là trung điểm của DH
a) Chứng minh:ADI = AHI
. b) Chứng minh: AD BD
. c) Cho BH = 9cm và HC = 16cm. Tính AH.
d) Vẽ HK vuông góc với AC tai K và trên tia HK lấy điểm E sao cho K là trung điểm của HE.
Chứng minh: DE < BD + CE.