a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc HBC=góc HCB
=>HB=HC
mà AB=AC
nên AH là trung trực của BC
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc HBC=góc HCB
=>HB=HC
mà AB=AC
nên AH là trung trực của BC
Bài 4 : Cho ∆ ABC cân tại A (góc A <90°).Kẻ BD vuông AC (D thuộc AC) , CE vuông AB (E thuộc AB ) , BD và CE cắt nhau tại H
a) Chứng minh BD = CE
b)Chứng minh. ∆BHC cân
c) Chứng minh. AH là đường trung trực của BC
Bài 4 : Cho ∆ ABC cân tại A (góc A <90°).Kẻ BD vuông AC (D thuộc AC) , CE vuông AB (E thuộc AB ) , BD và CE cắt nhau tại H
a) Chứng minh BD = CE
b)Chứng minh. ∆BHC cân
c) Chứng minh. AH là đường trung trực của BC
Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB( E thuộc AB)
a) Chứng minh BD=CE
b) Gọi I là giao điểm của BD và CE. Chứng minh tam giác IBC cân
Cho ∆ABC cân tại A. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. a,Chứng minh: ∆ABD=∆ACE Gọi I là giao điểm của BD và CE.
b,Chứng minh: AI là tia phân giác góc BAC.
c,Chứng minh: AI là đường trung trực của đoạn thẳng BC.
d,Tính :góc BIC ? Biết góc BAC = 50 độ
mọi người vẽ cả hình nữa nhé,cảm ơn mn
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H
a) Chứng minh: BD = CE
b) Chứng minh tam giác BHC cân
c) Chứng minh AH là đường trung trực của BC
d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC
Cho tam giác ABC cân tại A ( góc A < 90 độ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: tam giác ABD = tam giác ACE.
b) Chứng minh: tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh: góc ECB = góc DKC.
Cho tam giác ABC cân tại A ( A<90o). Kẻ BD vuông góc với AC ( D thuộc AC), CE vuông góc với AB ( E thuộc AB), BD và CE cắt nhau tại H.
a) Chứng minh: BD=CE
b) Chứng minh: tam giác BHC cân
c) Chứng minh: AH là đường trung trực của BC
d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc EBC và góc DKC.
4) Cho tam giác ABC cân tại A ( A < 90độ), vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh tam giác ABD = tam giác ACE
b) Chứng minh tam giác AED cân
c) Chứng minh AH là đường trung trực của ED.
Cho ΔABC cân tại A và góc A nhọn. Kẻ BD vuông góc với AC (D∈AC), CE vuông góc với AB (E∈AB). Gọi I là giao điểm của BD và CE.
a, Chứng minh BD = CE
b, Chứng minh ΔBIC là tam giác cân
c, Chứng minh AI là đường trung trực của đoạn thẳng BC
d, Chứng minh: IA + IB < CA + CB