Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị hương giang
Xem chi tiết
Funny Dogs
5 tháng 4 2018 lúc 17:12

ai trả lời đi

dẫn mk mới

HÀ ANH
Xem chi tiết
Công Mạnh Trần
Xem chi tiết
Đỗ Bích Ngọc
Xem chi tiết
Lê Minh Anh
20 tháng 8 2017 lúc 22:02

A B C D E F M

1, Do AD là đường cao của tam giác ABC cân tại A nên AD cũng đồng thời là trung tuyến của tam giác ABC

=> BD = DC

Mặt khác:  gBDE = 180độ - gBED - gDBE = 90độ - gBED

gFDC = 180độ - gDFC - gFCD = 90độ - gFCD

Mà: gBED = gFCD(t/g ABC cân tại A) => gBDE = gFDC

Xét t/g EDB và t/g FDC có:

Góc EBD = Góc FCD(t/g ABC cân tại A); BD = DC(chứng minh trên); Góc BDE = Góc FDC(chứng minh trên)

=> t/g EDB = t/g FDC(g-c-g)

=> BE = CF(2 canhm tương ứng)

P/s: 'g' là viết tắt của góc. VD: gBDE là góc BDE

't/g' là viết tắt của tam giác 

Lê Minh Anh
20 tháng 8 2017 lúc 22:19

b) Hình như câu a) nhưng bạn cần nối thêm E lại với F và gọi giao của AD và EF là O(mình không vẽ lại nữa nha)

Do: t/g ABC cận tại A nên: gABC = gACB = (180độ - gBAC) : 2 (1) và AB = AC(2) 

Mà: Theo câu a) thì BE = CF và từ (2) nên AB - BE = AC - CF hay AE = AF

=> t/g AEF cân tại A  => gAEF = gAFE = (180độ - gBAC) : 2 (3) 

Từ (1) và (3) ta được: gABC = gAEF   => FE // BC(2 cặp đồng vị bằng nhau)

Mà: AD vuông góc với BC => AD vuông góc với EF (tại O) (*1)

Mặt khác: Ad là đường cao của t/g ABC cân tại A nen AD cũng là phân giác gBAC  => gEAO = gFAO

Xét t/g AOE và t/g AOF có: AO chung; gEAO = gFAO(chứng minh trên); AE = AF(c/m trên)

=> t/g AOE = t/g AOF(c-g-c)

=> OE = OF(2 cạnh tương ứng) => O là trung điểm của EF mà O thuộc AD => AD đi qua trung điểm O của EF (*2)

Từ (*1) và (*2) ta được: AD là trung trực của EF

Lê Minh Anh
20 tháng 8 2017 lúc 23:18

c) Nối E với M

Ta có: Xét t/g EAD và t/g FAD có: AE = AF(theo câu b); gAED = gAFD (= 90độ); AD chung

=> t/g EAD = t/g FAD(cạnh huyền - cạnh góc vuông)

=> ED = DF(2 cạnh tương ứng)

=> DF = 1/2 EM (= ED)

Mà: Trong một tam giác, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy thì tam giác đó là tam giác vuông nên t/g EFM là t/g vuông tại F

Cô nàng Thiên Yết
Xem chi tiết
Nguyễn Viết Ngọc
15 tháng 7 2019 lúc 16:15

Hình tự vẽ

a ) Tam giác ABC cân tại A có đường cao AD => AD cũng là đường p/g 

=> \(\widehat{BAD}=\widehat{CAD}\)

Do DE \(\perp\)AB => \(\widehat{DEA}=90^o\) => Tam giác AED vuông

Do DF \(\perp\)AC => \(\widehat{DFA}=90^o\) => Tam giác AFD vuông

Xét hai tam giác vuông : \(\Delta AED\)và \(\Delta AFD\)có :

AD là cạnh huyền chung

\(\widehat{BAD}=\widehat{CAD}\)( cmt )

nên tam giác AED = tam giác AFD ( cạnh huyền - góc nhọn )

=> AE = AF

Ta có : 

AE + BE = AB

AF + CF = AC

mà AE = AF , AB = AC ( do tam giác ABC cân tại A )

=> BE = CF

b ) Gọi I là giao điểm của EF và AD

Xét \(\Delta AIE\)và \(\Delta AIF\)có :

AE = AF ( cm phần a )

\(\widehat{BAD}=\widehat{CAD}\)( cm phần a )

AI là cạnh chung 

=> \(\Delta AIE=\Delta AIF\)( c.g.c )
=> IE = IF                                                 (1 )

và \(\widehat{AIE}=\widehat{AIF}\)

Ta có : 

\(\widehat{AIE}+\widehat{AIF}=180^o\)( Hai góc kề bù )

\(\widehat{AIE}+\widehat{AIE}=180^o\)

\(\widehat{AIE}.2=180^o\)

\(\Rightarrow\widehat{AIE}=\frac{180^o}{2}=90^o\)

=> \(\widehat{AIE}=\widehat{AIF}=90^o\)                                        ( 2 )

Từ ( 1 )( 2 ) => AD là đường trung trực của EF

a) Vì ΔABCΔABC cân tại A => Bˆ=CˆB^=C^

mà AD là đường cao

=> AD là đường trung tuyến ΔABCΔABC

=> BD = DC

Xét ΔBEDΔBED và ΔCFDΔCFD có:

BEDˆ=CFDˆ(900)BED^=CFD^(900)

BD = DC (cmt)

Bˆ=Cˆ(cmt)B^=C^(cmt)

Do đó: ΔBED=ΔCFD(ch−gn)ΔBED=ΔCFD(ch−gn)

=> BE = CF (hai cạnh tương ứng)

b) Vì ΔBED=ΔCFD(cmt)ΔBED=ΔCFD(cmt)

=> ED = DF (hai cạnh tương ứng)

=> ΔEDFΔEDF cân tại D

=> D ∈∈ đường trung trực cạnh EF (1)

Xét ΔAEDΔAED và ΔAFDΔAFD có:

AD (chung)

AEDˆ=AFDˆ(=900)AED^=AFD^(=900)

ED = DF (cmt)

Do đó: ΔAED=ΔAFDΔAED=ΔAFD (cạnh huyền- cạnh góc vuông)

=> AE = AF(hai cạnh tương ứng)

=> ΔAEFΔAEF cân tại A
=> A ∈∈ đường trung trực cạnh EF (2)

(1); (2) => AD là đường trung trực cạnh EF

c) ta có: AD ⊥⊥ BC và AD⊥EFAD⊥EF

=> BC // EF

Gọi giao điểm của FM và DC là H ta có:

Xét ΔBEDΔBED và ΔCMDΔCMD có:

ED = DM (gt)

EDBˆ=CDMˆEDB^=CDM^ (đối đỉnh)

BD = DC (cmt)

Do đó: ΔBED=ΔCMDΔBED=ΔCMD (c-g-c)

mà ΔBED=ΔCFDΔBED=ΔCFD

=> ΔCMD=ΔCFDΔCMD=ΔCFD

=> CF = CM (hai cạnh tương ứng)

=> ΔFCMΔFCM cân tại C

=> C ∈∈đường trung trực cạnh FM (1)

DE = DF (cmt)

mà DE = DM

=> DF = DM

=> ΔFDMΔFDM cân tại D

=> D ∈∈ đường trung trực cạnh FM (2)

(1); (2) => DC là đường trung trực cạnh FM

=> DH ⊥⊥ FM

mà BC // EF

=> EF ⊥⊥ FH

=> EFMˆ=900EFM^=900 hay ΔEFMΔEFM vuông tại F

d) Vì ΔBED=ΔCMDΔBED=ΔCMD

=> BEDˆ=CMDˆ=900BED^=CMD^=900(hai góc tương ứng)

=> BE//CM(so le trong)

Khách vãng lai đã xóa
THCS Yên Hòa - Lớp 7A9 N...
14 tháng 4 2022 lúc 21:02

Δ

chi mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2023 lúc 20:58

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

Hà Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 9:05

a: góc ABC=90-30=60 độ

góc DBM=180-45-60=75 độ

góc DCN=45+30=75 độ

b: Xét ΔDNC vuông tại N và ΔDBM vuông tại M có

DC=DB

góc DCN=góc DBM

=>ΔDNC=ΔDBM

=>DM=DN

c: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

DM=DN

=>AMDN là hình vuông

=>AD là phân giác của góc BAC

vu dieu linh
Xem chi tiết
Lê Hương Trang
Xem chi tiết
Kiều Vũ Linh
10 tháng 1 lúc 8:05

loading... a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠CAD

Do ∆ABC cân tại A

⇒ AB = AC

Xét ∆ABD và ∆ACD có:

AB = AC (cmt)

∠BAD = ∠CAD (cmt)

AD là cạnh chung

⇒ ∆ABD = ∆ACD (c-g-c)

⇒ BD = CD

⇒ D là trung điểm của BC (1)

Do ∆ABD = ∆ACD (cmt)

⇒ ∠ADB = ∠ADC (hai góc tương ứng)

Mà ∠ADB + ∠ADC = 180⁰ (kề bù)

⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰

⇒ AD ⊥ BC (2)

Từ (1) và (2) ⇒ AD là đường trung trực của BC

b) Sửa đề: Chứng minh ∆ADM = ∆ADN

Do ∠BAD = ∠CAD (cmt)

⇒ ∠MAD = ∠NAD

Xét ∆ADM và ∆ADN có:

AD là cạnh chung

∠MAD = ∠NAD (cmt)

AM = AN (gt)

⇒ ∆ADM = ∆ADN (c-g-c)

⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)

⇒ DN ⊥ AN

⇒ DN ⊥ AC

d) Do K là trung điểm của CN (gt)

⇒ CK = KN

Xét ∆DKC và ∆EKN có:

CK = KN (cmt)

∠DKC = ∠EKN (đối đỉnh)

KD = KE (gt)

⇒ ∆DKC = ∆EKN (c-g-c)

⇒ ∠KDC = ∠KEN (hai góc tương ứng)

Mà ∠KDC và ∠KEN là hai góc so le trong

⇒ EN // CD

⇒ EN // BC (3)

∆AMN có:

AM = AN (gt)

⇒ ∆AMN cân tại A

⇒ ∠AMN = (180⁰ - ∠MAN) : 2

= (180⁰ - ∠BAC) : 2 (4)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)

Từ (4) và (5) ⇒ ∠AMN = ∠ABC

Mà ∠AMN và ∠ABC là hai góc đồng vị

⇒ MN // BC (6)

Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng