a) Hình như đề bị lộn
\(\Delta ABC\) cân tại A có AD là đường cao đồng thời là đường trung tuyến
Vậy AD là đường trung tuyến của MN.
b) Xét hai tam giác BDM và CDE có:
DM = DE (gt)
\(\widehat{BDM}=\widehat{CDE}\) (đối đỉnh)
DB = DC (do AD là đường trung tuyến)
Vậy: \(\Delta BDM=\Delta CDE\left(c-g-c\right)\)
Suy ra: \(\widehat{BMD}=\widehat{CED}\) (hai góc tương ứng)
Mà \(\widehat{BMD}=90^o\)
Do đó: \(\widehat{CED}=90^o\) hay CE \(\perp\) DE.
c) Hình như đề sai phải hok bn, mik sửa lại như vầy, nếu sai thì thôi nka
Ta có: DB = DC = \(\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
\(\Delta BMD\) vuông tại M, theo định lí Py-ta-go
Ta có: BD2 = BM2 + MD2
\(\Rightarrow\) MD2 = BD2 - BM2
MD2 = 52 - 32
MD2 = 16
Vậy: MD = \(\sqrt{16}=4\left(cm\right)\).