chứng minh đa thức sau không có nghiệm
x^2+8x+10
Chứng minh đa thức sau không có nghiệm x^2 + 8x + 19
x^2+8x+19
=x^2+4x+4x+8+11
=(x^2-4x)-(4x-8)+11
=x(x-4)-(x-4)+11
=(x-4)-(x-4)+11
=(x-4)^2+11
Vì (x-4)^2 Lớn hơn hoặc bằng 0
=>(x-4)^2+11>0
Vậy đa thức sau không có nghiệm
Chứng minh rằng đa thức sau không có nghiệm:
D(x) = \(-2x^2+8x-10\)
Biến đổi ta có : -2x2 = -8
\(\Rightarrow2x^2=8\)
\(\Rightarrow x^2=4\)
Vậy đa thức có tập nghiệm là -2 ;2
Cho giải lại
biến đoi ta có : \(-2x^2+8x=10\)
\(\Leftrightarrow-x^2+4x=5\)
\(\Leftrightarrow x\left(x+4\right)=-5\)
Vậy đa thcuw vo nghiem
~v; giải bài cao xa quá giờ giải lại chả biết đúng không :((
Cho D(x) = 0 tức là \(-2x^2+8x-10=0\)
Chia hai vế cho -1 ta được: \(2x^2-8x+10=0\)
Ta có: \(\text{Vế trái}=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2>0\forall x\)
Nên đa thức vô nghiệm. (đpcm)
Chứng minh đa thức M(x)= -8x^2+x+2 không có nghiệm
Ta có:
-8x^2 nhỏ hơn hoặc bằng 0 với mọi x thuộc R
x^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
2 = 2
Từ 3 điều trên suy ra -8x^2+x+2 lớn hơn hoặc bằng 2
=> -8x^2+x+2 vô nghiệm
Bài làm của mình không biết có đúng không (bởi mình không giỏi toán) nhưng chúc cậu học tốt ^^
chứng minh rằng đa thức sau không có nghiệm :f(x)=2x^2+2x+10
ta có:\(x\ge0\Rightarrow2x^2\ge0\)
\(\Rightarrow2x^2+2x\ge0\)
mà 10 > 0
\(=>2x^2+2x+10>0\)
hayf(x) ko có nghiệm
Chứng tỏ đa thức không có nghiệm
\(4x^2+8x+10\)
\(x^2+4x+6\)
\(4x^{2010}+6x^{2012}+2021\)
chứng minh rằng đa thức sau không có nghiệm: P(x)=x2+4x+10
Cho P(x)=0
=>x2+4x+10=x2+4x+4+6=(x+2)2+6
Do (x+2)2>0
=>(x+2)2+6>0
=>(x+2)2+6=0(vô lí)
Vậy P(x) vô nghiệm
đa thức p(x) không có nghiệm vì tại x=a bất kỳ ta luôn có p(a)=\(a^2+4a+10\ge o+0+10>0\)
Chứng minh đa thức sau không có nghiệm
x2 + 4x + 10
nghiệm của đa thức \(x^2+4x+10\)
=>\(x^2+4x+10\)=0
=>\(x^2+4x\)=0-10
=>\(x^2+4x=-10\)
=>\(x^2=-10:4\)
=>\(x^2=-\frac{2}{5}\)
=>x=2/5 hoặc -2/5
(không biết phải không nhe)
Chứng minh rằng đa thức : P(x) = 2x2 + 8x + 17 không có nghiệm
Ta có: P(x) = 2 . ( x2 + 4x ) + 17
= 2 . ( x2 + 2 . x . 2 + 22 - 22 ) + 17
= 2 . [ ( x2 + 2 . x . 2 + 22 ) - 22 ] + 17
= 2 . [ ( x + 2 )2 - 4 ] + 17
= 2 . ( x + 2 )2 - 8 + 17
= 2 . ( x + 2 )2 + 9
Vì ( x + 2 )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2 . ( x + 2 )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2 . ( x + 2 )2 + 9 \(\ge\) 9 \(>\) 0 với mọi x
\(\Rightarrow\) P(x) \(\ge\) 0 với mọi x
\(\Rightarrow\)Đa thức P(x) không có nghiệm
chứng minh rằng đa thức 2x^10+x^8+2 không có nghiệm
Ta có 2x^10 >= 0 ; x^8 >= 0 ; 2 > 0
=> 2x^10 + x^8 + 2 > 0
Vậy pt ko có nghiệm
Vì `x^10 = (x^2)^5 >=0, x^8 = (x^2)^6` >=0, 2 >0`
`=> x^10 + x^8 + 2 >= 0 + 0 + 2 = 2 > 0`
`=>` Đa thức vô nghiệm
Đặt \(2x^{10}+x^8+2=0\)
Mà \(\left\{{}\begin{matrix}2x^{10}\ge0\\x^8\ge0\end{matrix}\right.\) \(;\forall x\)
\(\rightarrow2x^{10}+x^8+2\ge2>0\)
--> đa thức không có nghiệm