Giải và biện luận bất phương trình: 2(x-4m)+2mx-1>4x(x+1)+3x
Giải và biện luận phương trình
2(x+4m)+2mx-1>4m(m+1)+3x
Bài 1: Giải các bất phương trình:
3(1 - x)> \(\dfrac{7-3x^2}{x+1}\)
Bài 2. Giải và biện luận bất phương trình
( m2 - 4 ) x +3 > ( 2m -1) x +m
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
giải và biện luận các bất phương trình : a) mx + 4 > 2x + m2 ; b) 2mx + 1 >= x + 4m2 ; c) x(m2 - 1) < m2 - 1 ; d) 2(m + 1)x <= (m + 1)2 (x - 1)
giải và biện luận bất phương trình bậc nhất
5(m+1)x+2<3m+4x
Giải và biện luận bất phương trình sau
\(\left(m-1\right)x^2-2mx+3m-2>0\)
\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)
- Nếu \(m=1\) thì (1) có dạng \(-2x+1>0\) nên có nghiệm \(x<\frac{1}{2}\)
- Nếu \(m\ne1\) thì (1) là bất phương trình bậc 2 với \(a=m-1\) và biệt thức \(\Delta'=-2m+5m-2\)
Trong trường hợp \(\Delta'\ge0\)
ta kí hiệu
\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\) ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\) \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)
Lập bảng xét dấu ta được
+ Nếu \(m\le\frac{1}{2}\) thì \(a<0\) ; \(\Delta'\le0\)
nên (1) vô nghiệm
+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)
\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\) hoặc \(x_2\)<x
+ Nếu m>2 thì a>0; \(\Delta'<0\)
nên (1) có tập nghiệm T(1)=R.
Ta có kết luận :
* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm
* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm
\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)
* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)
* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm
T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)
* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)
Giải và biện luận bất phương trình \(\dfrac{x-4m}{4-x}\le0\)
Nếu x = 4 thì bất phương trình vô nghiệm
Nếu x > 4 => 4 - x < 0
Bất phương trình tương đương với
x - 4m ≥ 0 ⇔ x ≥ 4m
Nếu x < 4 => 4 - x > 0
Bất phương trình tương đương với
x - 4m ≤ 0 ⇔ x ≤ 4m
Giải và biện luận phương trình (m+1)^2 x-2mx=m+5x-2
đề là như thế này à \(\left(m+1\right)x^2-2mx=m+5x-2\)
\(\left(m+1\right)x^2-2mx=m+5x-2\\ \Leftrightarrow\left(m+1\right)x^2-2mx-m-5x+2=0\\ \Leftrightarrow\left(m+1\right)x^2-\left(2m+5\right)x+2-m=0\)
Ta có:\(\Delta=\left[-\left(2m+5\right)\right]^2-4\left(m+1\right)\left(2-m\right)\)
\(=\left(2m+5\right)^2-4\left(-m^2+m+2\right)\\ =4m^2+20m+25+4m^2-4m-8\\ =8m^2+16m+17\)
Để pt có 2 nghiệm phân biệt thì Δ>0 hay:
\(8m^2+16m+17>0\Rightarrow x\in R\)
Để phương trình có nghiệm kép thì Δ=0 hay:
\(8m^2+16m+17=0\Rightarrow x\in\varnothing\)
Để phương trình vô nghiệm thì Δ<0 hay:
\(8m^2+16m+17< 0\Rightarrow x\in\varnothing\)
giải và biện luận phương trình
(mx-2)(2mx-x+1)=0
(mx - 2)*(2mx - x + 1) = 0
tương đương với tuyển hai pt:
*mx - 2 = 0 (a)
+nếu m = 0: (a) vô nghiệm
+nếu m # 0: (a) có nghiệm x = 2 / m.
*2mx - x + 1 = 0
<=>(2m - 1)x + 1 = 0 (b)
+nếu m = 1 / 2: (b) vô nghiệm
+nếu m # 1/2: (b) có nghiệm x = -1 / (2m - 1)
*xét 2 / m = -1 /(2m - 1)
<=> m = 2 / 5.
Kết luận:
+nếu m = 0 => S = {1} (lấy được nghiệm của b)
+nếu m = 1 / 2 => S = {4}
+nếu m = 2 / 5 => S = {5}
+nếu m # 0; m # 1 /2 và m # 2 / 5 => S = {2/m , -1 /(2m-1)}