Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chung may la ai
Xem chi tiết
Uyên Nguyễn
Xem chi tiết
Phạm tnhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 22:34

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

Bình Trần Thị
Xem chi tiết
hằng
14 tháng 1 2016 lúc 21:08

điên à

 

Dương Ánh
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Trọng Nghĩa
25 tháng 2 2016 lúc 10:05

\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)

- Nếu \(m=1\)   thì (1) có dạng \(-2x+1>0\)    nên có nghiệm \(x<\frac{1}{2}\)

- Nếu \(m\ne1\)   thì (1) là bất phương trình bậc 2 với \(a=m-1\)  và biệt thức \(\Delta'=-2m+5m-2\) 

Trong trường hợp \(\Delta'\ge0\)

ta kí hiệu 

\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\)    ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\)     \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)

Lập bảng xét dấu ta được

+ Nếu \(m\le\frac{1}{2}\)   thì \(a<0\)    ; \(\Delta'\le0\)

nên (1) vô nghiệm

+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)

\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\)  hoặc \(x_2\)<x

+ Nếu m>2 thì a>0; \(\Delta'<0\)

nên (1) có tập nghiệm T(1)=R.

Ta có kết luận :

* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm

* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm

\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)

* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)

* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm

T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)

* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)

jasminee
Xem chi tiết
Ngô Thành Chung
27 tháng 1 2021 lúc 12:43

Nếu x = 4 thì bất phương trình vô nghiệm

Nếu x > 4 => 4 - x < 0

Bất phương trình tương đương với

x - 4m ≥ 0 ⇔ x ≥ 4m

Nếu x < 4 => 4 - x > 0

Bất phương trình tương đương với

x - 4m ≤ 0 ⇔ x ≤ 4m

 

Nguyễn Hữu Quý Phong
Xem chi tiết
ILoveMath
1 tháng 1 2022 lúc 9:57

đề là như thế này à \(\left(m+1\right)x^2-2mx=m+5x-2\)

ILoveMath
1 tháng 1 2022 lúc 10:10

\(\left(m+1\right)x^2-2mx=m+5x-2\\ \Leftrightarrow\left(m+1\right)x^2-2mx-m-5x+2=0\\ \Leftrightarrow\left(m+1\right)x^2-\left(2m+5\right)x+2-m=0\)

Ta có:\(\Delta=\left[-\left(2m+5\right)\right]^2-4\left(m+1\right)\left(2-m\right)\)

              \(=\left(2m+5\right)^2-4\left(-m^2+m+2\right)\\ =4m^2+20m+25+4m^2-4m-8\\ =8m^2+16m+17\)

Để pt có 2 nghiệm phân biệt thì Δ>0 hay:

\(8m^2+16m+17>0\Rightarrow x\in R\)

Để phương trình có nghiệm kép thì Δ=0 hay:

\(8m^2+16m+17=0\Rightarrow x\in\varnothing\)

Để phương trình vô nghiệm thì Δ<0 hay:

\(8m^2+16m+17< 0\Rightarrow x\in\varnothing\)

Ngo Thi Linh Phuong
Xem chi tiết
Lê Nguyên Hạo
23 tháng 8 2016 lúc 14:22

(mx - 2)*(2mx - x + 1) = 0 
tương đương với tuyển hai pt: 
*mx - 2 = 0 (a) 
+nếu m = 0: (a) vô nghiệm 
+nếu m # 0: (a) có nghiệm x = 2 / m. 
*2mx - x + 1 = 0 
<=>(2m - 1)x + 1 = 0 (b) 
+nếu m = 1 / 2: (b) vô nghiệm 
+nếu m # 1/2: (b) có nghiệm x = -1 / (2m - 1) 
*xét 2 / m = -1 /(2m - 1) 
<=> m = 2 / 5. 
Kết luận: 
+nếu m = 0 => S = {1} (lấy được nghiệm của b) 
+nếu m = 1 / 2 => S = {4} 
+nếu m = 2 / 5 => S = {5} 
+nếu m # 0; m # 1 /2 và m # 2 / 5 => S = {2/m , -1 /(2m-1)}