Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Nguyễn
Xem chi tiết
kudo shinichi
23 tháng 1 2019 lúc 11:12

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Nguyễn Thị Hằng
Xem chi tiết
Phương Tuyết
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
vu duc thanh
8 tháng 7 2016 lúc 22:36

bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi  hoặc bdt holder  ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\)  câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .

Thắng Nguyễn
9 tháng 7 2016 lúc 8:37

Bài 1:Đặt VT=A

Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)

Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Tương tự với 2 cái còn lại

\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)

\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)

Đẳng thức xảy ra khi a=b=c 

Bài 2:

Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)

Dự đoán điểm rơi xảy ra khi a=b=c=1

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

Tương tự suy ra

\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)

phan thế nghĩa
Xem chi tiết
zZz Cool Kid_new zZz
30 tháng 8 2020 lúc 21:23

Sử dụng AM - GM ta dễ có:

\(abc\left(a+b+c\right)=bc\left(a^2+ab+ac\right)\le\left(\frac{a^2+ab+bc+ca}{2}\right)^2=\left[\frac{\left(a+b\right)\left(a+c\right)}{2}\right]^2=\frac{1}{4}\)

Suy ra đpcm

Khách vãng lai đã xóa
Rampage Noodle
Xem chi tiết
Nguyễn Trần Phương Thảo
Xem chi tiết
Nguyễn Trần Phương Thảo
22 tháng 9 2017 lúc 20:34

chú ý : đề sai

Thanh Trà
22 tháng 9 2017 lúc 20:45

Uả đề sai thì sao làm được?!

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đặng Ngọc Quỳnh
1 tháng 1 2021 lúc 8:42

giả sử \(a\ge b\ge c\ge0\)

Ta có: \(a+\frac{b}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-b^2\right)\ge0\Rightarrow a+\frac{b}{2}\ge\frac{a^2+ab+b^2}{a+b}\)

\(b+\frac{a}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-a^2\right)\le0\Rightarrow b+\frac{a}{2}\le\frac{a^2+ab+b^2}{a+b}\)

Tương tự: \(b+\frac{c}{2}\ge\frac{b^2+bc+c^2}{b+c}\ge c+\frac{b}{2};a+\frac{c}{2}\ge\frac{a^2+ac+c^2}{a+c}\ge c+\frac{a}{2}\)

Lại có:+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\ge\left(a-b\right)\left(b+\frac{a}{2}\right)+\left(b-c\right)\left(c+\frac{a}{2}\right)-\left(a-c\right)\left(a+\frac{c}{2}\right)\)

\(\ge\frac{-1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(1\right)\)

+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\le\left(a-b\right)\left(a+\frac{b}{2}\right)+\left(b-c\right)\left(b+\frac{c}{2}\right)-\left(a-c\right)\left(c+\frac{a}{2}\right)\)

\(\le\frac{1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(2\right)\)

Từ 1,2 => đpcm

Khách vãng lai đã xóa
tth_new
2 tháng 1 2021 lúc 14:46

BĐT đã cho tuong duong voi:

\(\left|\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\le\frac{1}{4}\left[\Sigma\left(a-b\right)^2\right]\)

Theo AM-GM ta có: \(\left(ab+bc+ca\right)\le\frac{9}{8}\cdot\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a+b+c}\)

Có: \(VT\le\frac{9}{8}\left|\frac{\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{\left(a+b+c\right)}\right|=\frac{9\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{8\left(a+b+c\right)}\)

Cần chứng minh: \(4\left(a+b+c\right)^2\left[\Sigma\left(a-b\right)^2\right]^2\ge9\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\)

Rõ ràng \(\Sigma\left(a-b\right)^2\ge3\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Cần cm: \(36\left(a+b+c\right)^2\sqrt[3]{\left(a-b\right)^4\left(b-c\right)^4\left(c-a\right)^4}\ge9\sqrt[3]{\left(a-b\right)^6\left(b-c\right)^6\left(c-a\right)^6}\)

Hay \(4\left(a+b+c\right)^2\ge\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Tiếp tục là điều hiển nhiên do \(VT\ge4\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]\)

\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

\(\ge6\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\ge VP\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\\a-b=b-c=c-a\\a=b=c\end{cases}}\Leftrightarrow a=b=c.\)

Khách vãng lai đã xóa
Rhider
Xem chi tiết
Rhider
19 tháng 12 2021 lúc 20:14

ai giỏi ạ