Tìm ba số nguyên biết
Câu hỏi : Cho ba số nguyên liên tiếp . Lập tích của hai trong ba số đó . Biết tổng của ba tích này là 242 . Tìm ba số nguyên đó
Gọi 3 số lần lượt là n; n+1; n+2
3 tích lần lượt là:
\(n\left(n+1\right)=n^2+n\\ n\left(n+2\right)=n^2+2n\\ \left(n+1\right)\left(n+2\right)=n^2+3n+2\)
Theo đề bài, ta có:
\(n^2+n+n^2+2n+n^2+3n+2=242\\ \Leftrightarrow3n^2+6n-240=0\\ \Leftrightarrow3\left(n-8\right)\left(n+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}n=8\\n=-10\end{matrix}\right.\)
Vậy bộ 3 số đó là \(\left\{8;9;10\right\},\left\{-10;-9;-8\right\}\)
Câu hỏi : Cho ba số nguyên liên tiếp . Lập tích của hai trong ba số đó . Biết tổng của ba tích này là 242 . Tìm ba số nguyên đó
Gọi 3 số nguyên liến tiếp lần lượt là a ; a + 1 ; a + 2.
a(a + 1) + a(a + 2) + (a + 1)(a + 2) = 242
a2 + a + a2 + 2a + a2 + 3a + 2 = 242
3a2 + 6a + 2 = 242
3(a2 + 2a) = 242 - 2
a2 + 2a + 1 - 1 = 240 : 3
(a + 1)2 = 80 + 1
(a + 1)2 = 81
\(\left(a+1\right)^2=\left(\pm9\right)^2\)
\(a+1=\pm9\)
a + 1 = \(\pm9\)
a = \(\pm8\)
a + 2 = \(\pm10\)
Vậy 3 số nguyên đó là 8 ; 9 ; 10 hoặc - 8 ; - 9 ; - 10
Gọi 3 số nguyên liên tiếp cần tìm là: a; a + 1; a + 2
Các tích lập được thỏa mãn là: a.(a + 1); (a + 1).(a + 2); (a + 2).a
Ta có: a.(a + 1) + (a + 1).(a + 2) + (a + 2).a = 242
=> a2 + a + (a + 1).a + (a + 1).2 + a2 + 2a = 242
=> a2 + a + a2 + a + 2a + 2 + a2 + 2a = 242
=> 3a2 + 6a + 2 = 242
=> 3a.(a + 2) = 242 - 2 = 240
=> a.(a + 2) = 240 : 3 = 80
=> a.(a + 2) = 8.10 = -10.(-8)
=> a = 8 hoặc a = -10
Vậy 3 số nguyên liên tiếp cần tìm là: 8; 9; 10 hoặc -10; -9; -8
Gọi 3 số tự nhiên liên tiếp là: n-1;n;n+1
n(n-1)+n(n+1)+(n-1)(n+1)= \(n^2-n+n^2+n+n^2-1\)
=\(3n^2-1\)
Mà \(3n^2-1=242\)
=> \(n^2=81\)=> n =9Vậy 3 số cần tìm 8;9;10tìm số nguyên tố ab biết ab+ba là số nguyên tố ?
ab+ba=10a+b+10b+a=11a+11b=11(a+b)
11(a+b) chia hết cho 11 mà ab+ba là số nguyên tố
=>a+b=1
=>ab=10
ab là hợp số nên không có số nguyên tố ab
Câu hỏi : Cho ba số nguyên liên tiếp . Lập tích của hai trong ba số đó . Biết tổng của ba tích này là 242 . Tìm ba số nguyên đó
1. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố đó là chẵn hay lẻ?
2. Tổng của ba số nguyên tố bằng 1012. Tìm số nhỏ nhất trong ba số nguyên tố đó.
3. Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Ta có: Gỉa sử 3 số nguyên tố đó đều là lẻ thì lẻ+lẻ+lẻ=lẻ
⇒Có một số nguyên tố chẵn
Chỉ 2 là số nguyên tố chẵn duy nhất
⇒Số nhỏ nhất trong ba số nguyên tố là 2
Tìm số nguyên x biết tổng của ba số nguyên 15; - 3 và x bằng 23
A. 11
B. -11
C. 25
D. – 25
Đáp án là A
Ta có:
15 + (-3) + x = 23
12 + x = 23
x = 23 - 12
x = 11
Tìm ab biết ab và ba là số nguyên tố . Biết ab-ba là số chính phương
Tìm số nguyên x, biết: x + 2018 là số nguyên âm lớn nhất có ba chữ số khác nhau
Tìm ba số nguyên dương biết rằng tổng của ba số ấy bằng nửa tích của hai số
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3 .
Ra 5,4,1
Mình chỉ ra kết quả thôi, còn trình bày lằng nhằng lắm
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.
Tìm số nguyên x, biết:
a) x+2018 là số nguyên âm lớn nhất có ba chữ số khác nhau.
b) x-202 là số nguyên dương nhỏ nhất.
c) Tổng của ba số x; -8; 2 bằng -19.