Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhung Hoàng
Xem chi tiết
Seulgi
3 tháng 5 2019 lúc 12:42

tam giác ABC vuông tại A (gt)

=> góc B  + góc C = 90

mà góc B = 60

=> góc C = 30

=> góc C < góc B xét tam giác ABC

=> AB < AC (đl)

Trần Kim Sao
3 tháng 5 2019 lúc 7:52

tgiac ABC vuông ở , B=60¤=> C=30¤

=>AC>AB vì 

AC là cạnh đối diện với góc lớn hơn (60¤)

AB.......................................nhở hơn (30¤)..

Trần Thị Ngọc Hân
Xem chi tiết
Lâm Ngọc Chánh
13 tháng 5 2017 lúc 9:18

b)  Xét tam giác abc và tam giác dbe có:

   \(\widehat{b}\): góc chung

   ab = bd (gt)

  \(\widehat{bac}\)\(\widehat{bde}\)( = 90 độ )

Vậy: tam giác abc = tam giac dbe 

Trần Dương
Xem chi tiết
kookie
Xem chi tiết
Duy Nam
22 tháng 4 2022 lúc 20:48

bn tham khảo nh

undefined

Nguyễn Tân Vương
22 tháng 4 2022 lúc 21:32

undefined

\(\text{a)Xét }\Delta ABC\text{ có:}\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(\text{tính chất tổng ba góc một tam giác}\right)\)

\(\Rightarrow\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(\text{Xét }\Delta ABC\text{ có:}\)

\(\widehat{A}>\widehat{B}>\widehat{C}\left(90^0>60^0>30^0\right)\)

\(\Rightarrow BC>AC>AB\left(\text{quan hệ giữa góc và cạnh đối diện trong tam giác}\right)\)

\(\Rightarrow AB< AC\)

\(b)\text{Xét }\Delta ABC\text{ và }\Delta DBE\text{ có:}\)

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BAC}=\widehat{BDE}=90^0\left(gt\right)\\BD=AB\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta DBE\left(g-c-g\right)\)

\(c)\text{Xét }\Delta ABH\text{ và }\Delta DBH\text{ có:}\)

\(\left\{{}\begin{matrix}BD=AB\left(gt\right)\\BH\text{ chung}\\\widehat{BAH}=\widehat{BDH}=90^0\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-gn\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\left(\text{hai góc tương ứng}\right)\)

\(\Rightarrow BH\text{ là phân giác }\widehat{ABC}\)

\(d)\text{Mik k bt:< }\)

 

SONG JOONG KI
Xem chi tiết
Kid TK
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết
Monkey.D.Luffy
17 tháng 5 2022 lúc 14:31

undefined

Nguyễn Lê Phước Thịnh
17 tháng 5 2022 lúc 14:32

a: \(\widehat{ACB}=90^0-60^0=30^0\)

XétΔABC có \(\widehat{ACB}< \widehat{ABC}\)

nên AB<AC

b: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có

BA=BD

góc ABC chung

Do đó;ΔBAC=ΔBDE

c: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có

BH chung

BA=BD

DO đó:ΔBAH=ΔBDH

SUy ra: \(\widehat{ABH}=\widehat{DBH}\)

hay BH là phân giác của góc ABC

DAQ GAMMING
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 15:56

a: AB=8cm

b: xét ΔABE vuông tại A và ΔDBE vuông tại D có

BE chung

BA=BD

Do đó: ΔABE=ΔDBE

Hoa Thiên Cốt
Xem chi tiết

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

Khách vãng lai đã xóa
NGuyễn Văn Thiều
Xem chi tiết
Lysr
8 tháng 5 2022 lúc 9:12

a. Xét tam giác vuông ABC 

Theo định lý Py - ta - go ta có :

AB2 + AC2 = BC2

=> 32 + AC2 = 52

=> 9 + AC2  = 25

=> AC2 = 16

=> AC = 4

Vậy AB < AC < BC

b. Xét tam giác BAM và tam giác BDM ta có :

BM chung

Góc BAM = góc BDM ( = 90 độ )

BA = BD ( gt)

=> tam giác BAM = tam giác BDM ( ch - cgv)

=> MA = MD ( hai cạnh tương ứng )

Xét tam giác AMN và tam giác DMC

góc AMN = góc DMC ( đối đỉnh )

MA = MD ( cmt)

góc MAN= góc MDC ( = 90 độ )

=> Tam giác AMN = tam giác DMC 

=> MN = MC

=> Tam giác MNC cân